

18-452/18-750
Wireless Networks and Applications
Lecture 17: LTE Advanced and 5G

Peter Steenkiste

Spring Semester 2020
<http://www.cs.cmu.edu/~prs/wirelessS20/>

Peter A. Steenkiste, CMU

1

Overview LTE

- Motivation
- Architecture
- Resource management
- LTE protocols
- Radio access network
- LTE advanced

Peter A. Steenkiste, CMU

2

LTE Radio Access Network

- LTE uses OFDM and MIMO
- OFDM offers benefits similar to those of CDMA
 - » Good immunity to fading as only a small portion of the energy for any one link is typically lost due to a fade
 - » Fast power control to keep the noise floor as low as possible
- Additional advantages
 - » Highly resistant to fading and inter-symbol interference
 - » Low modulation rates on each of the many sub-carriers
 - » Sophisticated error correction
 - » Scales rates easier than CDMA
 - » Allows more advanced antenna technologies, like MIMO
- Breaks information into pieces and assigns each one to a specific set of sub-carriers

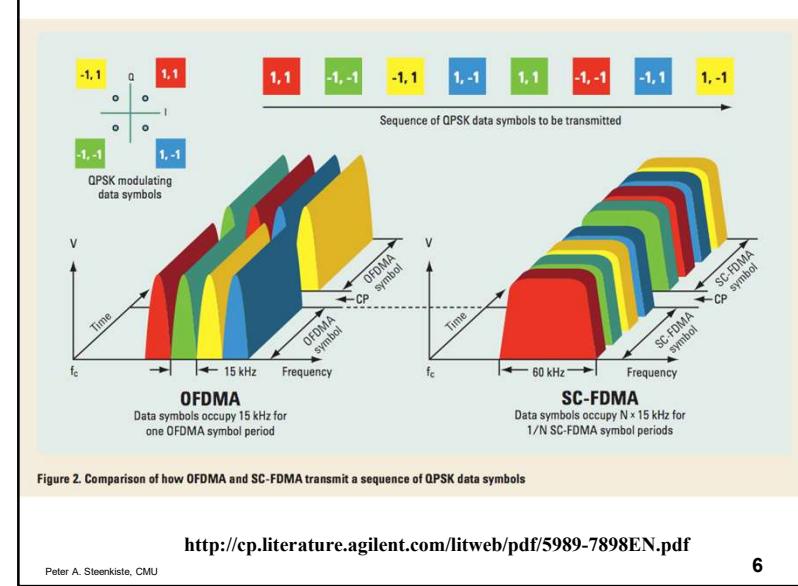
Peter A. Steenkiste, CMU

3

OFDMA: OFDM with Multiple Access

- LTE downlink uses OFDM with Multiple Access:
- In any time slot, multiple clients receive data on separate groups of subcarriers
 - » This is a form of FDMA (similar to GSM), but using groups of orthogonal subcarriers in
- For each group of subcarriers, multiple clients receive data in separate time slots
 - » TDMA (also similar to GSM)
 - » Multiple low bandwidth users can share subcarriers
- For each client, this enables frequency hopping to mitigate effects of narrowband fading

Peter A. Steenkiste, CMU

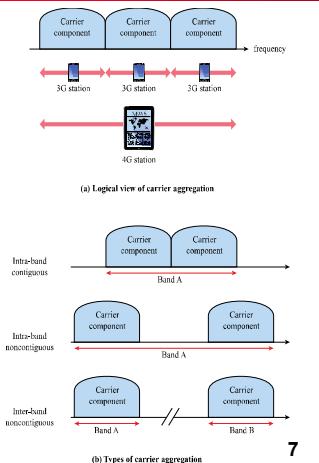

4

OFDM disadvantages SC-FDMA

- As the number of sub-carriers increases, the composite time-domain signal starts to look like Gaussian noise
- This translates into a high peak-to-Average Power ratio (PAPR)
- Avoiding distortion requires increases in cost, size and power consumption
- To avoid this cost on mobile devices, the uplink uses Single-Carrier FDMA
 - Does some preprocessing of the signal to reduce the high PAPR, at the cost of some loss in efficiency
 - Provides better energy and cost efficiency for battery-operated mobiles

Peter A. Steenkiste, CMU

5

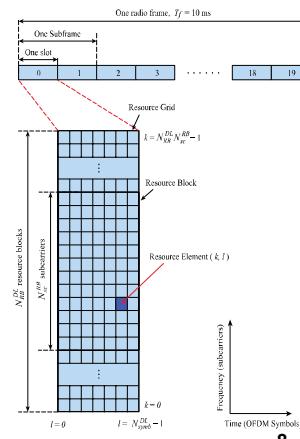


6

Carrier Aggregation

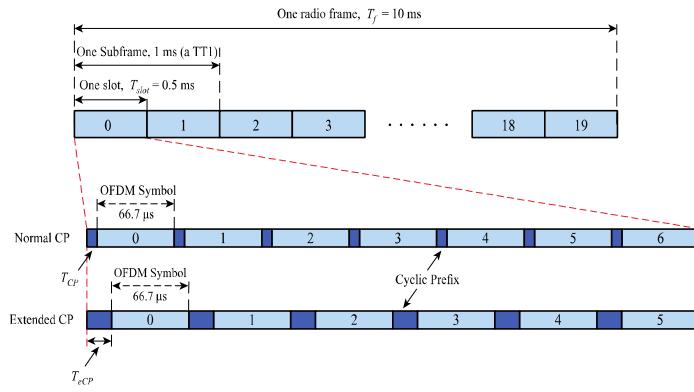
- Ultimate goal of LTE-Advanced is 100 MHz bandwidth
 - Combine up to 5 component carriers (CCs)
 - Each CC can be 1.4, 3, 5, 10, 15, or 20 MHz
 - Up to 100 MHz
- Three approaches to combine CCs
 - Intra-band Contiguous: carriers adjacent to each other
 - Intra-band noncontiguous: Multiple CCs belonging to the same band are used in a noncontiguous manner
 - Inter-band noncontiguous: Use different bands

Peter A. Steenkiste, CMU



7

Resource Blocks


- A time-frequency grid is used to illustrate allocation of physical resources
- Each column is 6 or 7 OFDM symbols per slot
- Each row corresponds to a subcarrier of 15 kHz
 - Some subcarriers are used for guard bands
 - 10% of bandwidth is used for guard bands for channel bandwidths of 3 MHz and above

Peter A. Steenkiste, CMU

8

FDD Frame Structure

9

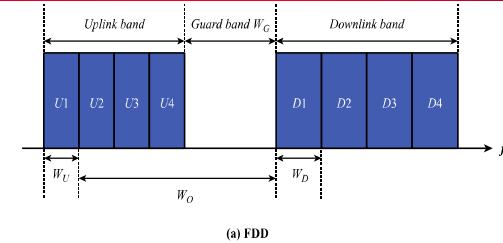
Peter A. Steenkiste, CMU

Resource Blocks

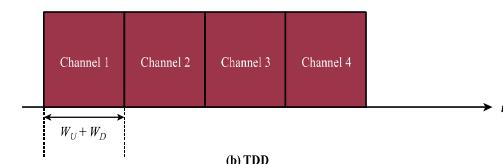
- **Resource Block**
 - » 12 subcarriers, 6 or 7 OFDM symbols
 - » Results in 72 or 84 resource elements in a resource block
- **MIMO: 4x4 in LTE, 8x8 in LTE-Advanced**
 - » Separate resource grids per antenna port
- **eNodeB assigns RBs with channel-dependent scheduling**
- **Multiuser diversity can be exploited**
 - » To increase bandwidth usage efficiency
 - » Assign resource blocks for UEs with favorable qualities on certain time slots and subcarriers
 - » Can also consider fairness, QoS priorities, typical channel conditions, ..

10

Peter A. Steenkiste, CMU


Managing Uplink and Downlink

- **LTE uses both TDD and FDD**
 - » Both have been widely deployed
- **Time Division Duplexing (TDD)**
 - » Uplink and downlink transmit in the same frequency band, but alternating in the time domain
- **Frequency Division Duplexing (FDD)**
 - » Different frequency bands for uplink and downlink
- **LTE uses two cyclic prefixes (CPs)**
 - » Extended CP is for worse environments


11

Peter A. Steenkiste, CMU

Spectrum Allocation for FDD and TDD

(a) FDD

(b) TDD

12

Overview LTE

- Motivation
- Architecture
- Resource management
- LTE protocols
- Radio access network
 - » OFDM refresher
- LTE advanced

Peter A. Steenkiste, CMU

13

LTE-Advanced

- Carrier aggregation – up to 100 MHz
- MIMO enhancements to support higher dimensional MIMO – up to 8 x 8
- Relay nodes
- Heterogeneous networks involving small cells such as femtocells, picocells, and relays
- Cooperative multipoint transmission and enhanced intercell interference coordination
- Voice over LTE

Peter A. Steenkiste, CMU

14

Comparison LTE and LTE-Advanced

System Performance		LTE	LTE-Advanced
Peak rate	Downlink	100 Mbps @20 MHz	1 Gbps @100 MHz
	Uplink	50 Mbps @20 MHz	500 Mbps @100 MHz
Control plane delay	Idle to connected	<100 ms	< 50 ms
	Dormant to active	<50 ms	< 10 ms
User plane delay		< 5ms	Lower than LTE
Spectral efficiency (peak)	Downlink	5 bps/Hz @2x2	30 bps/Hz @8x8
	Uplink	2.5 bps/Hz @1x2	15 bps/Hz @4x4
Mobility		Up to 350 km/h	Up to 350–500 km/h

Peter A. Steenkiste, CMU

15

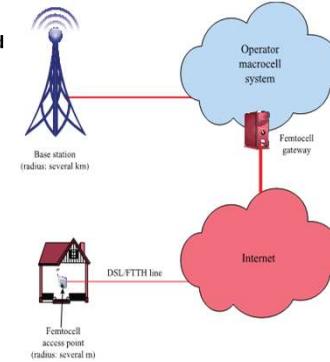
Relaying

- Relay nodes (RNs) extend the coverage area of an eNodeB
 - » Receive, demodulate and decode the data from a UE
 - » Apply error correction as needed
 - » Transmit a new signal to the base station
- An RN functions as a new base station with smaller cell radius
- RNs can use out-of-band or inband frequencies

Peter A. Steenkiste, CMU

16

Heterogeneous Networks


- It is increasingly difficult to meet data transmission demands in densely populated areas
- **Small cells** provide low-powered access nodes
 - » Operate in licensed or unlicensed spectrum
 - » Range of 10 m to several hundred meters indoors or outdoors
 - » Best for low speed or stationary users
- **Macro cells** provide typical cellular coverage
 - » Range of several kilometers
 - » Best for highly mobile users

Peter A. Steenkiste, CMU

17

Heterogeneous Network Examples

- **Femtocell**
 - » Low-power, short-range self-contained base station
 - » In residential homes, easily deployed and use the home's broadband for backhaul
 - » Also in enterprise or metropolitan locations
- **Network densification** is the process of using small cells
 - » Issues: Handovers, frequency reuse, QoS, security
- A network of large and small cells is called a *heterogeneous network (HetNet)*

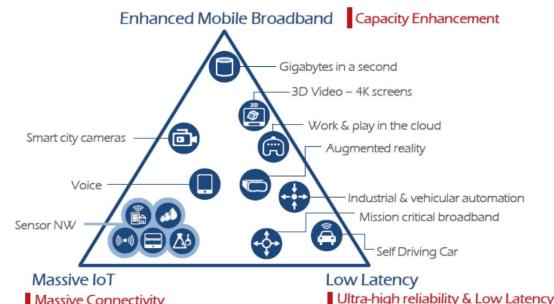
18

Trends

- **Cloud RAN optimizes spectrum use**
 - » Goal is to reuse frequencies very aggressively
 - » Leverage cloud technology to centralize the processing for many cells
- **Standards are complex and rigid and need to support several generations**
 - » E.g., switch seamlessly from 4G to 3G
 - » Still need to support 2G (legacy phones, voice)
- **Scalability of infrastructure wrt signaling traffic is a growing concern**
 - » Hardware cannot keep up with changes in usage
- **Wide-spread use of custom hardware**
 - » Move to commodity, programmable equipment

Peter A. Steenkiste, CMU

19


Overview 5G

- **Goals and Motivation**
- **Architecture**
- **Managing heterogeneity**
- **Virtualization and cloud technology**
- **Cloud-RAN**
- **NOMA**
- **5G campus networks**

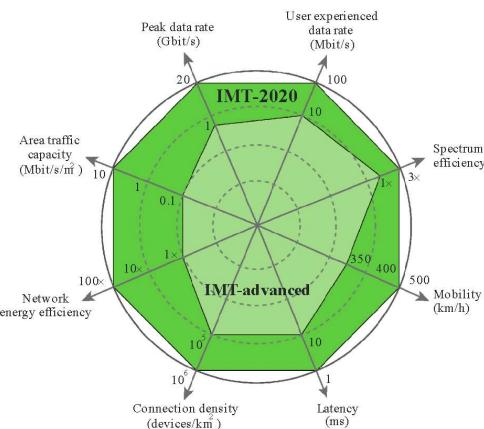
Peter A. Steenkiste, CMU

20

5G Vision ITU International Mobile Telecommunications

Faster 4G

Growing application domains


(Source: ETRI graphic, from ITU-R IMT 2020 requirements)

https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf

Peter A. Steenkiste, CMU

21

Performance Goals ITU

Peter A. Steenkiste, CMU

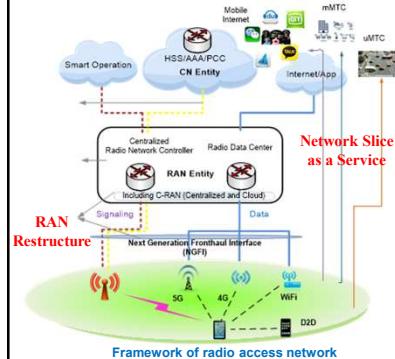
22

5G technology More of the Same?

- Goal is 10+ fold increase in bandwidth over 4G
 - » Combination of more spectrum and more aggressive use of 4G technologies
- Very aggressive use of MIMO
 - » Tens to hundred antennas
 - » Very fine grain beamforming and MU-MIMO
- More spectrum: use of millimeter bands
 - » Challenging but a lot of spectrum available
 - » Bands between 26 and 60 GHz
 - » Beamforming extends range
- Also new lower frequency bands
 - » Low-band and mid-band 5G: 600 MHz to 6 GHz

Peter A. Steenkiste, CMU

23

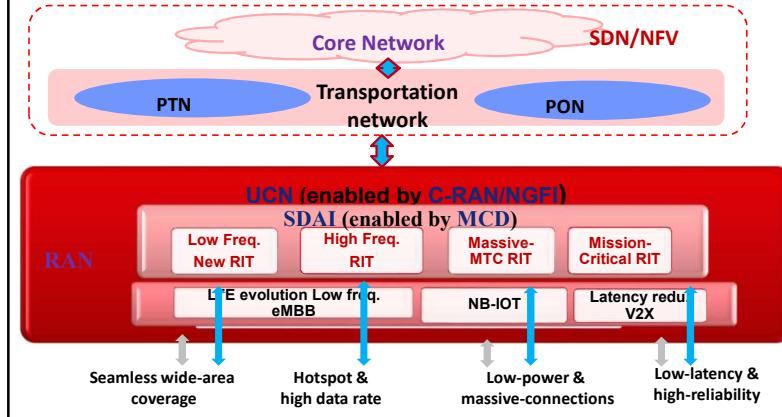

Is That Enough?

- Scaling up existing solutions attacks bandwidth challenges, but what about ...
- Dealing with heterogeneity
 - » Widely different traffic loads
 - » Use of very different parts of the spectrum
- Dealing with increased complexity
 - » Multiple traffic classes, signaling protocols
 - » Diverse types of PHY processing
- Managing different deployment models controlling costs
 - » Mobile users vs IoT vs low latency/high bandwidth
 - » Private cellular – 5G campus networks

Peter A. Steenkiste, CMU

24

Cloud RAN (C-RAN)


- **Aggressively move processing to the cloud**
 - » Network control, signaling protocols
 - » Radio processing
- **Assumes moving to the use of commodity platforms**
- **Use of modern cloud, networking technologies**
 - » Virtualization, network functions (NFV), software defined networking

Peter A. Steenkiste, CMU

Figure based on: https://www.itu.int/en/ITU-T/gsc/Documents/GSC-20/Session-6/GSC20_Session6_5G_Ch1h_IEEE.ppt

25

5G Key Technologies

Peter A. Steenkiste, CMU

Figure based on: https://www.itu.int/en/ITU-T/gsc/Documents/GSC-20/Session-6/GSC20_Session6_5G_Ch1h_IEEE.ppt

26

Acronyms

- **RIT: Radio Interface Technology**
- **UNC: User-centric network**
 - » Optimize user performance, e.g., interference mitigation
- **NGFI: Next-Generation Fronthaul Interfaces**
 - » Interface for exchanging signal information between baseband and remote radio units
- **SDAI: Software-Defined Air Interface**
 - » Interface to manage PHY and link level: frame structure, waveform, multiple access, duplex mode, antenna config, ..
- **MCD: Multi-level Centralized and Distribute protocol stack:**
 - » Coordinates decision making across the system (cell, UE)
- **PTN: Packet Transport Network**
- **PON: Passive Optical Network**

Peter A. Steenkiste, CMU

27