

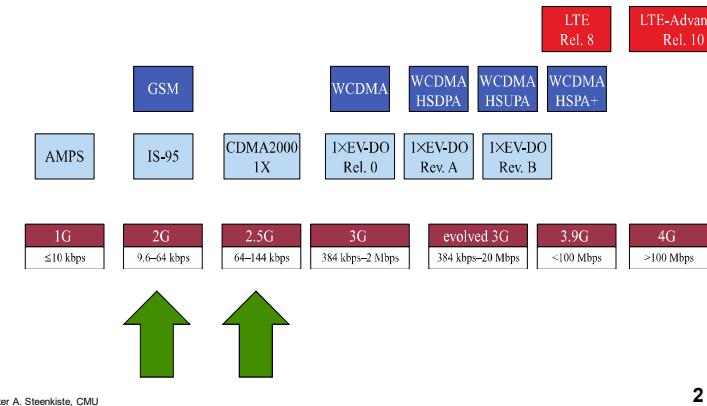
18-452/18-750
Wireless Networks and Applications
Lecture 16: LTE

Peter Steenkiste

Spring Semester 2020
<http://www.cs.cmu.edu/~prs/wirelessS20/>

Peter A. Steenkiste, CMU

1


GSM Multiple Access Example

- Combination of FDMA and TDMA
 - » More on this later
- 890-915 MHz for uplink
- 935-960 MHz for downlink
- Each of those 25 MHz bands is sub divided into 124 single carrier channel of 200 KHz
 - » Each with a data rate of 270.833 kbps
- In each uplink/downlink band there is a 200 KHz guard band
- Each 200 KHz channel carries 8 TDMA channels

Peter A. Steenkiste, CMU

3

Evolution of Cellular Wireless Systems

Peter A. Steenkiste, CMU

2

Additional GSM Features

- **GSM uses GMSK modulation**
 - » Gaussian Minimum Shift Keying
 - » Optimized version of Frequency Shift Keying (FM)
- **Slow frequency hopping: successive TDMA frames are sent over a different frequency**
 - » Switches every 4.615 msec
 - » Spreads out effect of multipath fading
 - » Also helps with co-channel interference
- **Delay equalization**
 - » Mobile stations sharing a frame can be at different distances from the base station
 - » Tail bits and guard bits provide margin to avoid overlap

Peter A. Steenkiste, CMU

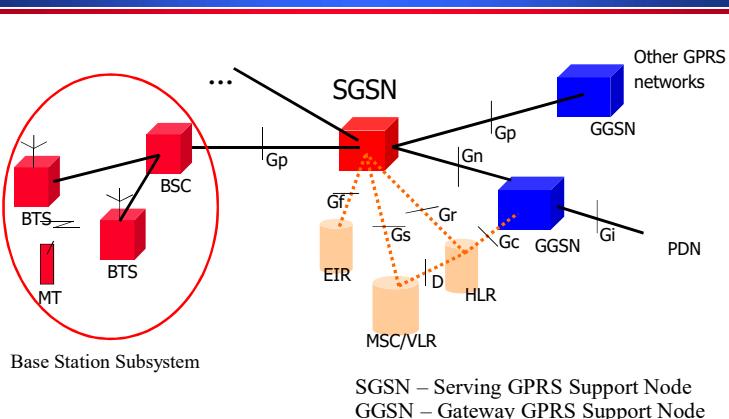
4

Generalized Packet Radio Service (GPRS)

- Packet-oriented data transport service
 - » Bursty, non-periodic traffic typical for Internet access
- Uses a new architecture for data traffic
 - » Allows users to open a persistent data connection
 - » Sending data traffic over a voice connection would add too much setup and teardown overhead
- Uses the same frame structure as voice
 - » 21.4 kbps from a 22.8 kbps gross data rate
 - » Can combine up to 8 GSM connections
 - Overall throughputs up to 171.2 kbps
 - » Enhanced Data Rates for GSM Evolution (EDGE) further increased rates using a more aggressive PHY

5

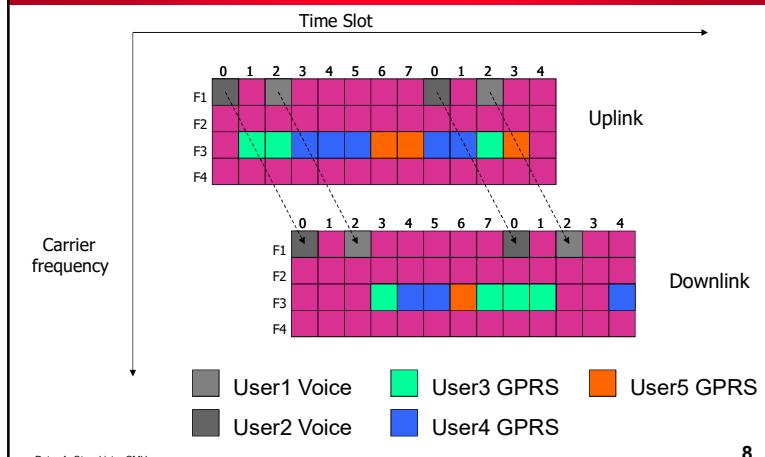
Peter A. Steenkiste, CMU


GPRS Architecture

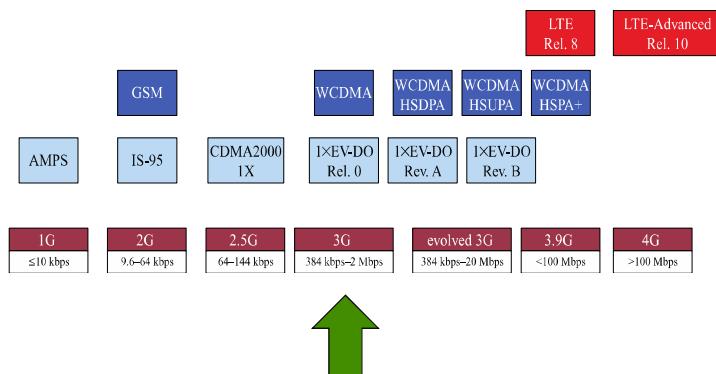
- Network Subsystem includes several new entities:
 - Serving GPRS Support Node (SGSN): data transfer between Base Station and Network Subsystem
 - Gateway GPRS Support Node: connects to other GPRS networks and the packet data network (Internet)
 - New interfaces between the various entities
- Transmission plane
 - Data packets are transmitted by a tunnel mechanisms
- Control plane
 - Protocol for tunnel management: create, remove, ...
 - GPRS Tunnel Protocol
- Radio interface
 - Changes the logical channels and how they are managed

6

Peter A. Steenkiste, CMU


GPRS Architecture

7


Peter A. Steenkiste, CMU

GPRS Radio Interface

8

Evolution of Cellular Wireless Systems

9

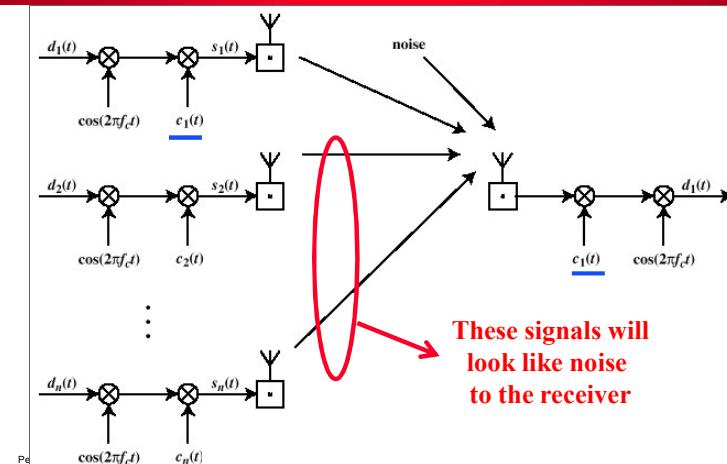
Peter A. Steenkiste, CMU

Who is Who

- **International Telecommunications Union (ITU) - agency of the United Nations responsible for:**
 - » Assisting in the development and coordination of worldwide standards
 - » Coordinate shared use of the global spectrum
 - » Defined the International Mobile Telecommunications 2000 (IMT-2000) project for 3G telecommunications
- **Third Generation Partnership Project (3GPP)**
 - » A group of telecommunications associations that represent large markets world-wide
 - » Defined a group of 3G standards as part of the IMT-2000 framework in 1999
 - » Originally defined GSM, EDGE, and GPRS
 - » Later defined follow-on releases and also LTE (4G)

10

Peter A. Steenkiste, CMU


UMTS and WCDMA

- Part of a group of 3G standards defined as part of the IMT-2000 framework by 3GPP
- Universal Mobile Telecommunications System (UMTS)
 - » Successor of GSM
- W-CDMA is the air interface for UMTS
 - » Wide-band CDMA
 - » Originally 144 kbps to 2 Mbps, depending on mobility
- Basically same architecture as GSM
 - » Many GSM functions were carried over WCDMA
 - » But they changed all the names!

11

Peter A. Steenkiste, CMU

Reminder: CDMA - Direct Sequence Spread Spectrum

Later Releases Improved Performance

- **High Speed Downlink Packet Access (HSDPA):**
1.8 to 14.4 Mbps downlink
 - » Adaptive modulation and coding, hybrid ARQ, and fast scheduling
- **High Speed Uplink Packet Access (HSUPA):**
Uplink rates up to 5.76 Mbps
- **High Speed Packet Access Plus (HSPA+):**
Maximum data rates increased from 21 Mbps up to 336 Mbps
 - » 64 QAM, 2x2 and 4x4 MIMO, and dual or multi-carrier combinations
- **Eventually led to the definition of LTE**

Peter A. Steenkiste, CMU

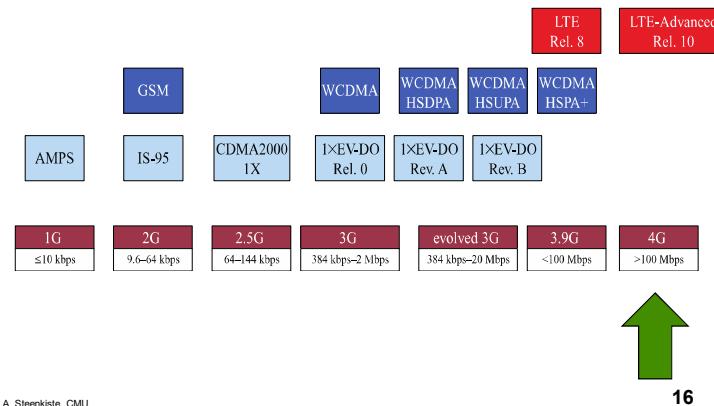
13

Advantages of CDMA for Cellular systems

- **Frequency diversity** – frequency-dependent transmission impairments have less effect on signal
- **Multipath resistance** – chipping codes used for CDMA exhibit low cross correlation and low autocorrelation
- **Privacy** – privacy is inherent since spread spectrum is obtained by use of noise-like signals
- **Graceful degradation** – system only gradually degrades as more users access the system

Peter A. Steenkiste, CMU

14


Mobile Wireless CDMA Soft Hand-off

- **Soft Handoff** – mobile station temporarily connected to more than one base station simultaneously
- Requires that the mobile acquire a new cell before it relinquishes the old
- More complex than hard handoff used in FDMA and TDMA schemes

Peter A. Steenkiste, CMU

15

Evolution of Cellular Wireless Systems

Peter A. Steenkiste, CMU

16

Overview LTE

- Motivation
- Architecture
- Resource management
- LTE protocols
- Radio access network
 - » OFDM refresher
- LTE advanced

Some slides based on material from
 "Wireless Communication Networks and Systems"
 © 2016 Pearson Higher Education, Inc.

Peter A. Steenkiste, CMU

17

Purpose, motivation, and approach to 4G

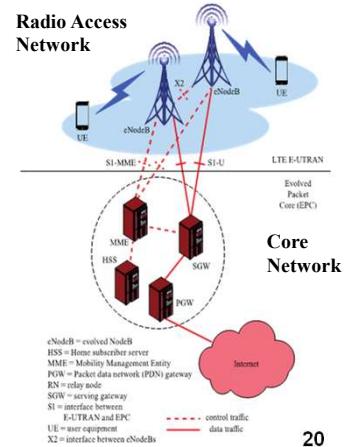
- Defined by ITU directives for International Mobile Telecommunications Advanced (IMT-Advanced)
- All-IP packet switched network.
- Ultra-mobile broadband access
- Peak data rates
 - » Up to 100 Mbps for high-mobility mobile access
 - » Up to 1 Gbps for low-mobility access
- Dynamically share and use network resources
- Smooth handovers across heterogeneous networks
 - » 2G and 3G networks, small cells such as picocells, femtocells, and relays, and WLANs
- High quality of service for multimedia applications

Peter A. Steenkiste, CMU

18

High Level Features

- No support for circuit-switched voice
 - » Instead providing Voice over LTE (VoLTE)
- Replace spread spectrum/CDMA with OFDM


Technology	1G	2G	2.5G	3G	4G
Design began	1970	1980	1985	1990	2000
Implementation	1984	1991	1999	2002	2012
Services	Analog voice	Digital voice	Higher capacity packetized data	Higher capacity, broadband	Completely IP based
Data rate	1.9. kbps	14.4 kbps	384 kbps	2 Mbps	200 Mbps
Multiplexing	FDMA	TDMA, CDMA	TDMA, CDMA	CDMA	OFDMA, SC-FDMA
Core network	PSTN	PSTN	PSTN, packet network	Packet network	IP backbone

19

LTE Architecture

- evolved NodeB (eNodeB)
 - » Most devices connect into the network through the eNodeB
- Evolution of the previous 3GPP NodeB (~2G BTS)
 - » Uses OFDM instead of CDMA
- Has its own control functionality
 - » Dropped the Radio Network Controller (RNC - ~2G BSC)
 - » eNodeB supports radio resource control, admission control, and mobility management (handover)
 - » Was originally the responsibility of the RNC

Peter A. Steenkiste, CMU

20

Evolved Packet System

- Overall architecture is called the Evolved Packet System (EPS)
- 3GPP standards divide the network into
- Radio access network (RAN): cell towers and connectives to mobile devices
- Core network (CN): management and connectivity to other networks
- Each can evolve independently
 - » Driven by different technologies: optimizing spectrum use versus management and control or traffic

Peter A. Steenkiste, CMU

21

Evolved Packet System Components

- Long Term Evolution (LTE) is the RAN
 - » Called Evolved UMTS Terrestrial Radio Access (E-UTRA)
 - » Enhancement of 3GPP's 3G RAN
 - » eNodeB is the only logical node in the E-UTRAN
 - » No Radio Network Controller (RNC)
- Evolved Packet Core (EPC)
 - » Operator or carrier core network –core of the system
- Traditionally circuit switched but now entirely packet switched
 - » Based on IP - Voice supported using voice over IP (VoIP)

Peter A. Steenkiste, CMU

22

Design Principles of the EPS

- Packet-switched transport for traffic belonging to all QoS classes
 - » Voice, streaming, real-time, non-real-time, background
- Comprehensive radio resource management
 - » End-to-end QoS, transport for higher layers
 - » Load sharing/balancing
 - » Policy management across different radio access technologies
- Integration with existing 3GPP 2G and 3G networks
- Scalable bandwidth from 1.4 MHz to 20 MHz
- Carrier aggregation for overall bandwidths up to 100 MHz

Peter A. Steenkiste, CMU

23

Evolved Packet Core Components

- Mobility Management Entity (MME)
 - » Supports user equipment context, identity, authentication, and authorization
- Serving Gateway (SGW)
 - » Receives and sends packets between the eNodeB and the core network
- Packet Data Network Gateway (PGW)
 - » Connects the EPC with external networks
- Home Subscriber Server (HSS)
 - » Database of user-related and subscriber-related information
- Interfaces
 - » S1 interface between the E-UTRAN and the EPC
 - For both control purposes and for user plane data traffic
 - » X2 interface for eNodeBs to interact with each other
 - Again for both control purposes and for user plane data traffic

Peter A. Steenkiste, CMU

24

Overview

- Motivation
- Architecture
- Resource management
- LTE protocols
- Radio access network
 - » OFDM refresher
- LTE advanced

Some slides based on material from
 "Wireless Communication Networks and Systems"
 © 2016 Pearson Higher Education, Inc.

Peter A. Steenkiste, CMU

25

LTE Resource Management

- LTE uses **bearers** for quality of service (QoS) control instead of circuits
- **EPS bearers**
 - » Between entire path between PGW and UE
 - » Maps to specific QoS parameters such as data rate, delay, and packet error rate
- **Service Data Flows (SDFs)** differentiate traffic flowing between applications on a client and a service
 - » SDFs must be mapped to EPS bearers for QoS treatment
 - » SDFs allow traffic types to be given different treatment
- **End-to-end service is not completely controlled by LTE**

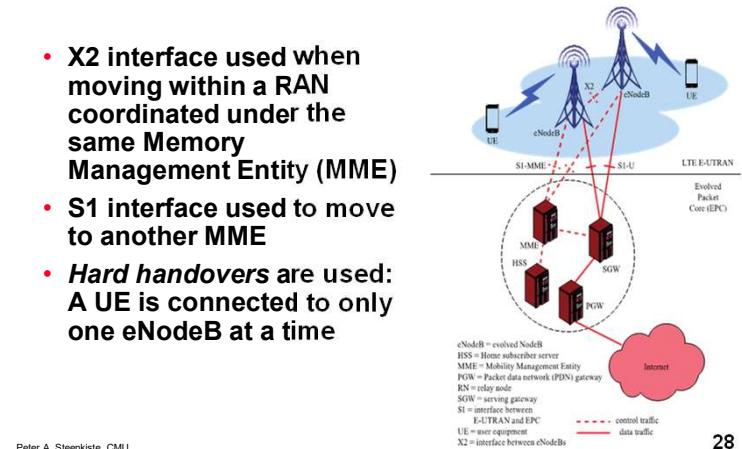
Peter A. Steenkiste, CMU

26

Bearer Management based on QoS Class Identifier (QCI)

QCI	Resource Type	Priority	Packet Delay Budget	Packet Error Loss Rate	Example Services
1	GBR	2	100 ms	10^{-2}	Conversational Voice
2		4	150 ms	10^{-3}	Conversational Video (live streaming)
3		3	50 ms	10^{-3}	Real Time Gaming
4		5	300 ms	10^{-6}	Non-Conversational Video (buffered streaming)
5	Non-GBR	1	100 ms	10^{-6}	IMS Signalling
6		6	300 ms	10^{-6}	Video (buffered streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)
7		7	100 ms	10^{-3}	Voice, Video (live streaming) Interactive Gaming
8		8	300 ms	10^{-6}	Video (buffered streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)
9*		9	300 ms	10^{-6}	

* QCI value typically used for the default bearer


Guaranteed (minimum) Bit Rate
No Guarantees

Peter A. Steenkiste, CMU

27

EPC: Mobility Management

- X2 interface used when moving within a RAN coordinated under the same **Memory Management Entity (MME)**
- S1 interface used to move to another MME
- **Hard handovers** are used: A UE is connected to only one eNodeB at a time

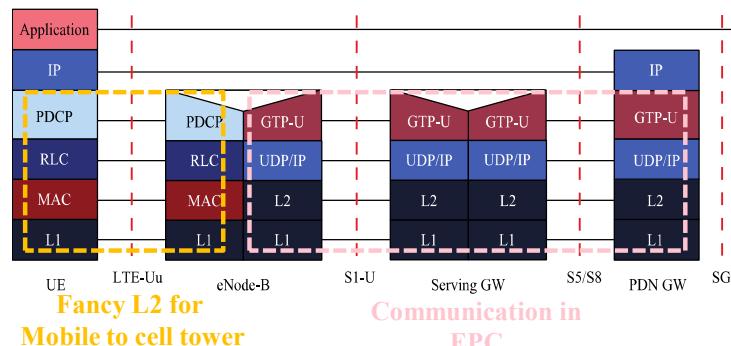
28

EPC: Inter-cell Interference Coordination (ICIC)

- Reduces interference when the same frequency is used in a neighboring cell
- Goal is universal frequency reuse
 - » $N = 1$ in “Cellular principles” lecture
 - » Must avoid interference when mobile devices are near each other at cell edges
 - » Interference randomization, cancellation, coordination, and avoidance are used
- eNodeBs send *indicators*
 - » Relative Narrowband Transmit Power, High Interference, and Overload indicators
- Later releases of LTE have improved interference control
 - » “Cloud RAN”: use a cloud to manage interference, spectrum

Peter A. Steenkiste, CMU

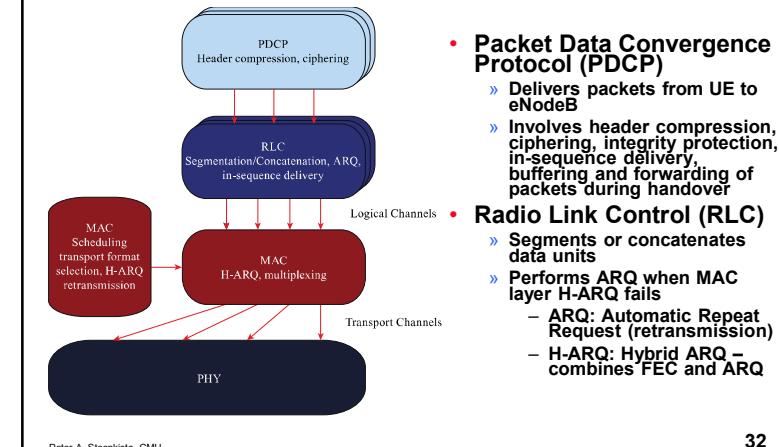
29


Overview

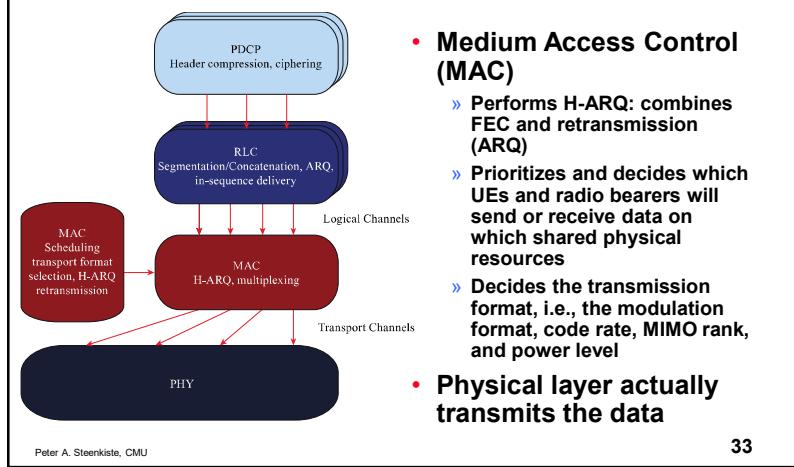
- Motivation
- Architecture
- Resource management
- LTE protocols
- Radio access network
 - » OFDM refresher
- LTE advanced

Some slides based on material from
“Wireless Communication Networks and Systems”
© 2016 Pearson Higher Education, Inc.

30


Protocol Layers End-to-End

Peter A. Steenkiste, CMU


31

Protocol Layers PDCP and RLC

32

Protocol Layers MAC and PHY

Peter A. Steenkiste, CMU

33