

18-452/18-750

Wireless Networks and Applications

Lecture 13: Wireless and the Internet

Peter Steenkiste

Spring Semester 2020

<http://www.cs.cmu.edu/~prs/wirelessF20/>

Peter A. Steenkiste

1

Outline

- WiFi deployments
 - » Planning
 - » Channel selection
 - » Rate adaptation
- The Internet 102
- Wireless and the Internet
- Mobility: Mobile IP
- TCP and wireless
- Disconnected operation
- Disruption tolerant networks

Peter A. Steenkiste

2

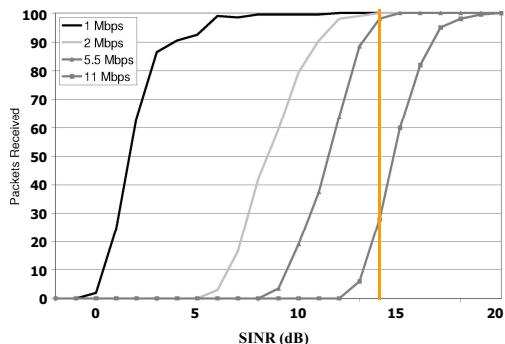
Rate Adaptation

- WiFi supports multiple bit rates but does not standardize bit rate selection
- Outline
 - » Background
 - » RRAA
 - » Charm
 - » MIMO discussion

Peter A. Steenkiste

3

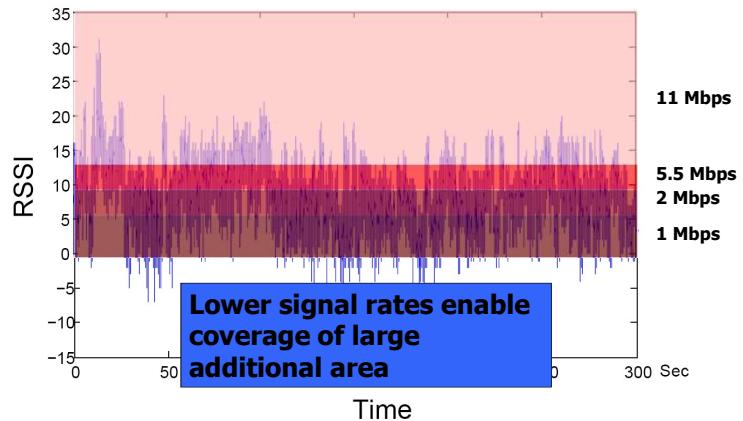
Bit Rate Adaptation


- All modern WiFi standards are multi bit rate
 - » 802.11b has 4 rates, more recent standards have 10s
 - » Vendors can have custom rates!
- Many factors influence packet delivery:
 - » Fast and slow fading: nature depends strongly on the environment, e.g., vehicular versus walking
 - » Interference versus WiFi contention: response to collisions is different
 - » Random packet losses: can confuse “smart” algorithms
 - » Hidden terminals: decreasing the rate increases the chance of collisions
- Transmit rate adaptation: how does the sender pick?

Peter A. Steenkiste

4

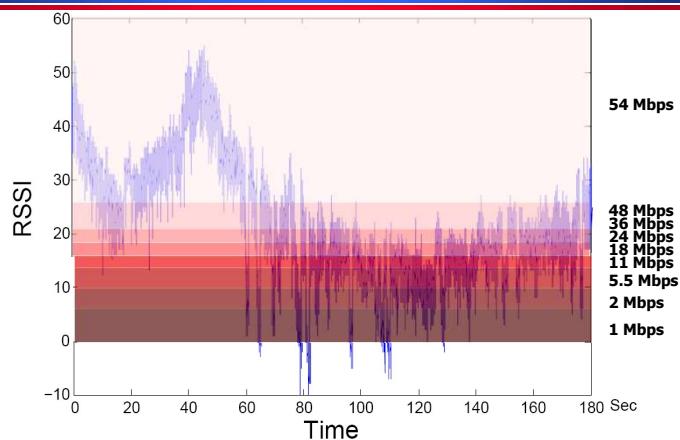
Transmit Rate Selection


- Goal: pick rate that provides best throughput
 - » E.g. SINR 14 dB \rightarrow 5.5 Mbps
 - » Needs to be adaptive

Peter A. Steenkiste

5

"Static" Channel



Peter A. Steenkiste

6

Lower signal rates enable coverage of large additional area

Mobile Channel – Pedestrian

Peter A. Steenkiste

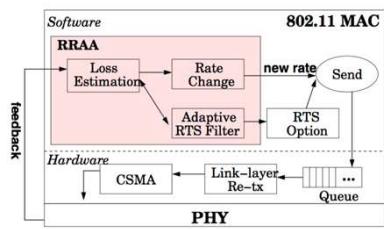
7

High Level Designs

- “Trial and Error”: senders use past packet success or failures to adjust transmit rate
 - » Sequence of x successes: increase rate
 - » Sequence of y failures: reduce rate
 - » Hard to get x and y right
 - » Random losses can confuse the algorithm
- Signal strength: stations use channel state information to pick transmit rate
 - » Use path loss information to calculate “best” rate
 - » Assumes a relationship between PDR and SNR
 - Need to recover if this fails, e.g., hidden terminals
- Newest class: context sensitive solutions
 - » Adjust algorithm depending on, e.g., degree of mobility, ..

Peter A. Steenkiste

8


Robust Rate Adaptation Algorithm

- RRAA goals
 - » Maintain a stable rate in the presence of random loss
 - » Responsive to drastic channel changes, e.g., caused by mobility or interference
- Adapt rate based on short term PDR

$$R_{new} = \begin{cases} R^+ & P > P_{MTL} \\ R_- & P < P_{ORT} \end{cases}$$

- » Thresholds and averaging windows depend on rate

- Selectively enable RTS-CTS

Peter A. Steenkiste

10

CHARM

- Channel-aware rate selection algorithm
- Transmitter passively determines SINR at receiver by leveraging channel reciprocity
 - » Determines SINR without the overhead of active probing (RTS/CTS)
- Select best transmission rate using rate table
 - » Table is updated (slowly) based on history
 - » Needed to accommodate diversity in hardware and special conditions, e.g., hidden terminals
- Jointly considers problem of transmit antenna selection

Peter A. Steenkiste

10

SINR: Noise and Interference

$$\text{SINR} = \frac{\text{RSS}}{\text{Noise} + \sum \text{Interference}}$$

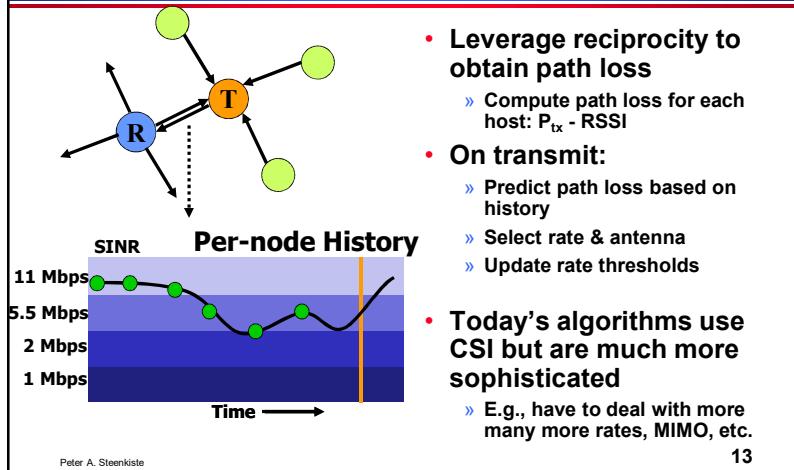
- Noise
 - » Thermal background radiation
 - » Device inherent
 - Dominated by low noise amplifier noise figure
 - » ~Constant
- Interference
 - » Mitigated by CSMA/CA
 - » Reported as “noise” by NIC

Peter A. Steenkiste

11

SINR: RSS

$$RSS = P_{tx} + G_{tx} - PL + G_{rx} \quad (1)$$

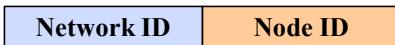

$$PL = P_{tx} + G_{tx} + G_{rx} - RSS \quad (2)$$

- By the reciprocity theorem, at a given instant of time
 - » $PL_{A \rightarrow B} = PL_{B \rightarrow A}$
- A overhears packets from B and records RSS (1)
- Node B records P_{tx} and card-reported noise level in beacons and probes, so A has access to them
- A can then calculate path-loss (2) and estimate RSS and SINR at B

Peter A. Steenkiste

12

CHARM: Channel-aware Rate Selection

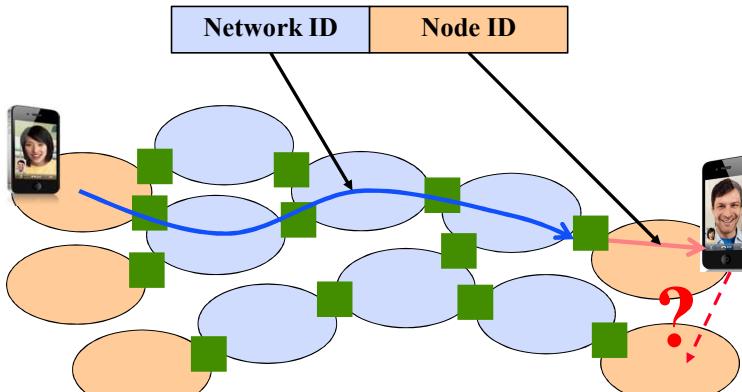


Outline

- WiFi deployments
 - » Planning
 - » Channel selection
 - » Rate adaptation
- The Internet 102
- Wireless and the Internet
- Mobility: Mobile IP
- TCP and wireless
- Disconnected operation
- Disruption tolerant networks

14

IP Address Structure



- Network ID identifies the network
 - » CMU = 128.2
- Node ID identifies node within a network
 - » Node IDs can be reused in different networks
 - » Can be assigned independently by local administrator
- Size of Network and Node IDs are variable
 - » Originally Network IDs came in three sizes only
 - » Variable sized Network IDs are often called a prefix
- Great, but what does this have to do with mobility?

15


Peter A. Steenkiste

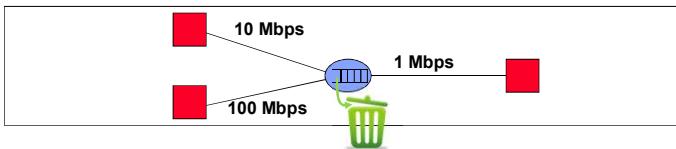
Routing and Forwarding in the Internet

Mobility Challenges

- When a host moves to a new network, it gets a new IP address
- How do other hosts connect to it?
 - » Assume you provide services
 - » They have old IP address
- How do peers know you are the same host?
 - » IP address identifies host
 - » Associated with the socket of any active sessions
- What assumption is made here?

Peter A. Steenkiste

17


Main TCP Functions

- Connection management
 - » Maintain state at endpoints to optimize protocol
- Flow control: avoid that sender outruns the receiver
 - » Uses sliding window protocol
- Error control: detect and recover from errors
 - » Lost, corrupted, and out of order packets
- Congestion control: avoid that senders flood the network
 - » Leads to inefficiency and possibly network collapse
 - » Very hard problem – was not part of original TCP spec!
 - » Solution is sophisticated (and complex)

Peter A. Steenkiste

18

TCP Congestion Control

- Congestion control avoids that the network is overloaded
 - » Must slow down senders to match available bandwidth
 - » Routers that have a full queue drop packets – inefficient!
- How does sender know the network is overloaded?
- It looks for dropped packets as a sign of congestion
- What assumption is made here?

Peter A. Steenkiste

19

Wireless and the Internet Challenges

- IP addresses are used both to forward packets to a host and to identify the host
 - » Active session break when a host moves
 - » Mobile hosts are hard to find
- TCP congestion control interprets packet losses as a sign of congestion
 - » Assumes links are reliable, so packet loss = full queue
 - » Not true for wireless links!
- Applications generally assume that they are continuously connected to the Internet
 - » Can access servers, social networks, ...
 - » Mobile apps must support “disconnected” operations

Peter A. Steenkiste

20

Outline

- The Internet 102
- Wireless and the Internet
- Mobility: Mobile IP
- TCP and wireless
- Disconnected operation
- Disruption tolerant networks

Peter A. Steenkiste

21

How about Link Layer Mobility?

- Link layer mobility is easier
- Learning bridges can handle mobility → this is how it is handled at CMU
- Wireless LAN (802.11) also provides some help to reduce impact of handoff
 - » The two access points coordinate to reduce latency, packet loss
- Problem is with inter-network mobility, i.e. Changing IP addresses
 - » Want host to always have the same IP address

Peter A. Steenkiste

22

Network Mobility: Two Simple Solutions

- Routing: mobile nodes keep “home” IP address and advertise route to mobile address as /32 in BGP
 - » Leverages LPM semantics - should work!!
 - » Bad idea: scalability
- DNS: mobile nodes get “local” IP address and update name-address binding in DNS
 - » DNS allows updates of the address – should work!!
 - » Bad idea: results in a lot of write traffic to DNS
 - » DNS is not designed for this and reduces caching benefit

Peter A. Steenkiste

23

More Practical Way to Support Mobility

- Host gets new IP address in new “foreign” network
 - » Simple: use Dynamic Host Configuration (DHCP)
 - » No impact on Internet routing
- Raises two challenges:
 1. Maintaining a TCP connection while mobile: Transport connections are tied to src/dest IP addresses → What happens to active connections when a host moves?
 2. Finding the host: Host does not have constant address → how do other devices contact the host?

Peter A. Steenkiste

24

How to Handle Transport Connections for Mobile Nodes?

- Hosts use a 4 tuple to identify a TCP connection
 - » <Src Addr, Src port, Dst addr, Dst port>
 - » Change your IP address breaks the connection – hard to fix
- Best approach: add a level of indirection using two IP addresses
 - » A “identifier” IP address that identifies the connection on end-points
 - » A “locator” IP address that is used in the packets and can change
 - » Host does a mapping
- Security issue: Can someone easily hijack connection?
- Difficult to deploy → both ends must support mobility
- Even better approach: keep the same IP address!

Peter A. Steenkiste

25

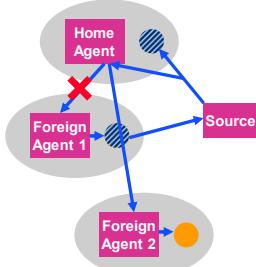
Finding Mobile Hosts: Mobile IP

- Communicate with mobile hosts using their “home” IP address
 - » Target is “nomadic” devices: do not move while communicating, i.e., laptop, not cellphone
 - » Allows any host to contact mobile host using its “usual” IP address, as if it were in its “normal” location
- Mobility should be transparent to applications and higher level protocols
 - » No need to modify the software
- Minimize changes to host and router software
 - » No changes to communicating host
- Security should not get worse

Peter A. Steenkiste

26

Finding Mobile Hosts: Mobile IP


- Any host can contact mobile host using its usual “home” IP address
 - » Target is “nomadic” devices: do not move while communicating, i.e., laptop
- Home network has a home agent that is responsible for intercepting packets and forwarding them to the mobile host.
 - » E.g., router at the edge of the home network
 - » Forwarding is done using tunneling
- Remote network has a foreign agent that manages communication with mobile host.
 - » Module that runs on mobile and the point of contact for the mobile host
- Binding ties home IP address of mobile host to a “care of” address in the foreign network.
 - » binding = (home IP address, foreign IP address)

Peter A. Steenkiste

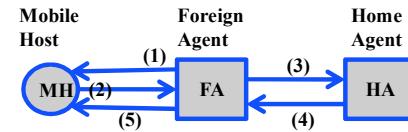
27

Mobile IP Operation


- Registration process: mobile host registers with home agent.
 - » Home agent needs to know that it should intercept packet and forward them
- In foreign network, foreign agent gets local “care of” address and notifies home agent
 - » Home agent knows where to forward packets
- Tunneling
 - » Home agent forward packets to foreign agent
 - » Return packets are tunneled in the reverse direction
- Supporting mobility
 - » Update binding in home and foreign agents.

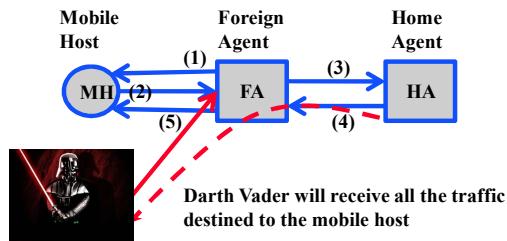
Peter A. Steenkiste

28


Tunneling IP-in-IP Encapsulation

Peter A. Steenkiste

29


Registration via Foreign Agent

Peter A. Steenkiste

30

Authentication

Solution: Registration messages between a mobile host and its home agent must be authenticated

Peter A. Steenkiste

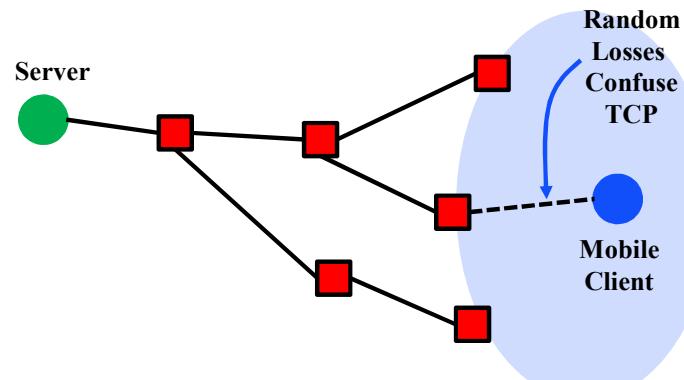
31

Mobility Discussion

- Obvious optimization: mobile host send return packet directly to communicating host – not through home agent
 - » Problem: may look like spoofed traffic to the foreign network
- Mobile IP not used in practice
- Mobile devices are typically clients, not servers, i.e., they initiate connections
 - » The problem Mobile IP solves rare in practice
- Mobile IP is not designed for truly mobile users
 - » Designed for nomadic users, e.g. visitors to a remote site
- IETF defined several solutions that are more efficient
 - » Also more heavy weight: creates overlay with tunnels and special “routers”
- All solutions are similar: need a “relay” that knows location of the device

Peter A. Steenkiste

32


Outline

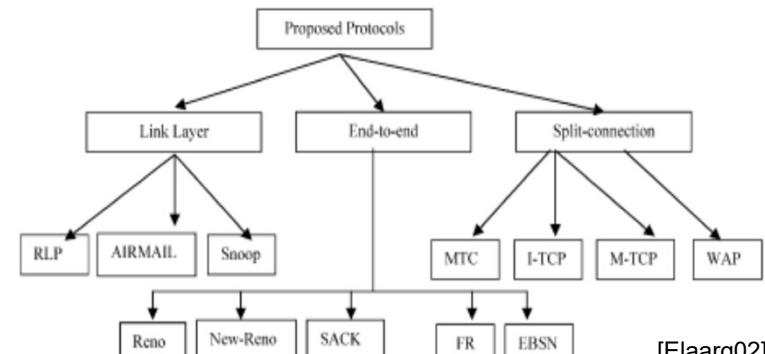
- The Internet 102
- Wireless and the Internet
- Mobility: Mobile IP
- TCP and wireless
- Disconnected operation
- Disruption tolerant networks

Peter A. Steenkiste

33

Solution Ideas?

34


Solution Space

- **Modify TCP for wireless paths**
 - » Would maintain status quo for wired paths
 - » What would wireless TCP look like?
 - » Difficult to do: there are many Internet hosts
 - » Traditionally, hosts have no information about path properties
- **Modify TCP for all paths**
 - » Not clear what that modification would be!
 - » Similar problems: need to modify many hosts
- **Modify TCP only on the mobile host**
 - » A more practical idea – but what would the change be?
- **Keep end hosts the same but tweak things at the wireless gateway**
 - » Keep end-end TCP happy despite wireless links

Peter A. Steenkiste

35

Possible Classification of Solutions

36

An Internet Style Approach

- Use aggressive retransmission in the wireless network to hide retransmission losses
 - » Most deployed wireless network in fact do that already
 - » Would sell few products if they did not
- Wireless losses translate into increased delay
 - » But TCP roundtrip time estimation is very conservative, e.g. increases if variance is high
- Also: persistent high loss rate results in reduced available bandwidth → congestion response is appropriate and needed
- Works remarkably well!
- Other solutions only needed for “challenged” networks

Peter A. Steenkiste

37

Outline

- The Internet 102
- Wireless and the Internet
- Mobility: Mobile IP
- TCP and wireless
- Disconnected operation
- Disruption tolerant networks

Peter A. Steenkiste

38

Disconnected Operation

- Mobility means that devices will occasionally be disconnected from the network
 - » Seconds ... Minutes ... Hours .. Days
 - » Mostly an issue for clients
- This can confuse systems and applications that assume a wired/stationary model
 - » Clients cannot access servers, e.g., mail, calendar applications, ...
 - » Distributed file systems
 - » Systems for back up or systems management
- Must adapt the applications and systems to make them “disconnection aware”

Peter A. Steenkiste

39

Two Examples

- E-mail: users must be able to “work on” e-mail offline and operations are performed when the mobile client is redirected
 - » Compose, read and delete e-mail
 - » Possibly others: manage folders, etc.
- Calendars and tasks are similar: operations performed offline must be executed later
 - » Adding or removing appointment and tasks, ...
- Must sometimes resolve conflicts when multiple clients are used offline
 - » E.g., mail is deleted on one client and moved to another folder on another – delete or keep?
 - » Tend to be minor – ask user for help if needed

Peter A. Steenkiste

40

More Complex Case: File System

- A distributed file system can be accessed from many computers
 - » Files tend to be cached in the computers
- Creates opportunities for inconsistencies
 - » E.g., a file is modified on two different computers – how do you merge the changes? Who is responsible?
- The consistency model depends on the file system
 - » Stronger consistency requires that the system can keep track of all copies and remove/lock them if needed
- Disconnected operation makes the consistency problem harder!
 - » Some file copies may be inaccessible for long periods!

41

Peter A. Steenkiste

Mobility is Common Today

- Many applications are designed to work on mobile clients so they deal properly with disconnections
 - » Many apps on mobile devices are designed for mobility
 - » Most clients server applications can work offline with at least partial functionality
- Does not work for interactive applications
 - » Games, etc.
- Disconnection can still be very inconvenient
 - » Need state that is not cached on your client device
 - » Things like back ups cannot be performed
 - » Unpredictable delays in communication

42

Peter A. Steenkiste

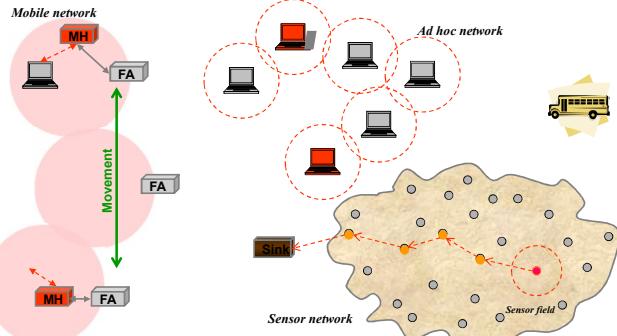
Outline

- The Internet 102
- Wireless and the Internet
- Mobility: Mobile IP
- TCP and wireless
- Disconnected operation
- Disruption tolerant networks

43

Peter A. Steenkiste

Based on slides by Kevin Fall


Challenged Networks

- Violate one or more of Internet's assumptions
 - » End-points may rarely/never be online at the same time
 - » Very long delay path, frequent disconnections, ...
 - » Have naming semantics for their particular application domain
 - » Not be well served by the current end-to-end TCP/IP
- Examples
 - » Terrestrial mobile networks
 - » Some ad-hoc networks
 - » Sensor/actuator networks
- Goals for “disruption tolerant” networks
 - » Achieve interoperability between very diverse types networks
 - » Sometimes also called disruption tolerant

44

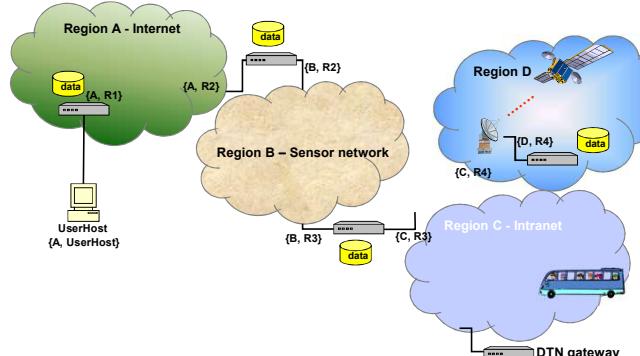
Peter A. Steenkiste

Background

Peter A. Steenkiste

High-level Architecture

- **Characteristics:**
 - » Operate as an **overlay** above the existing transport layers
 - » Based on an abstraction of **message switching**
 - Bundle
 - Bundle forwarder (DTN gateway)
 - **Store-and-forward** gateway function between different networks



- **Constituent of DTN architecture**
 - » Region: internally homogenous, i.e. same network stack, addressing, ...
 - » DTN gateway: Interconnection point between region boundaries
 - » Name Tuple: {Region name, Entity name}

Peter A. Steenkiste

46

Example DTN

Peter A. Steenkiste