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Rate Adaptation

* WiFi supports multiple bit rates but does not
standardize bit rate selection
* Outline
» Background
» RRAA
» Charm
» MIMO discussion
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Outline

* WiFi deployments
» Planning
» Channel selection
» Rate adaptation

* The Internet 102

* Wireless and the Internet

* Mobility: Mobile IP

* TCP and wireless

* Disconnected operation

* Disruption tolerant networks
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Bit Rate Adaptation

* All modern WiFi standards are multi bit rate
» 802.11b has 4 rates, more recent standards have 10s
» Vendors can have custom rates!

* Many factors influence packet delivery:

» Fast and slow fading: nature depends strongly on the
environment, e.g., vehicular versus walking

» Interference versus WiFi contention: response to
collisions is different

» Random packet losses: can confuse “smart” algorithms
» Hidden terminals: decreasing the rate increases the
chance of collisions
* Transmit rate adaptation: how does the
sender pick?
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Transmit Rate Selection

* Goal: pick rate that provides best throughput
» E.g. SINR 14 dB = 5.5 Mbps
» Needs to be adaptive
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“Static” Channel
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High Level Designs
* “Trial and Error”: senders use past packet
success or failures to adjust transmit rate
» Sequence of x successes: increase rate
» Sequence of y failures: reduce rate
» Hard to get x and y right
» Random losses can confuse the algorithm
- Signal strength: stations use channel state
information to pick transmit rate
» Use path loss information to calculate “best” rate
» Assumes a relationship between PDR and SNR
— Need to recover if this fails, e.g., hidden terminals
* Newest class: context sensitive solutions
» Adjust algorithm depending on, e.g., degree of mobility, ..
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Robust Rate
Adaptation Algorithm

CHARM

* RRAA goals
» Maintain a stable rate in the presence of random loss
» Responsive to drastic channel changes, e.g., caused
by mobility or interference

e Adapt rate based on
short term PDR Software 802.11 MAC
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. annel-aware rate selection algorith
* Transmitter passively determines SINR at
receiver by leveraging channel reciprocity
» Determines SINR without the overhead of active
probing (RTS/CTS)
» Select best transmission rate using rate table
» Table is updated (slowly) based on history
» Needed to accommodate diversity in hardware and
special conditions, e.g., hidden terminals
* Jointly considers problem of transmit
antenna selection

10
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SINR: Noise and Interference

SINR: RSS

RSS
Noise + } Interference

SINR =

* Noise
» Thermal background radiation

» Device inherent
— Dominated by low noise amplifier noise figure

» ~Constant
* Interference
» Mitigated by CSMA/CA
» Reported as “noise” by NIC

1"
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» By the reciprocity theorem, at a given instant of
time
» PLasg=Plgsa
* A overhears packets from B and records RSS (1)

* Node B records P,, and card-reported noise level
in beacons and probes, so A has access to them

* A can then calculate path-loss (2) and estimate
RSS and SINR at B
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CHARM: Channel-aware Rate
Selection

* Leverage reciprocity to
obtain path loss

» Compute path loss for each
host: P,, - RSSI

¢ On transmit:

H » Predict path loss based on
v history

SINR Per-node History » Select rate & antenna
» Update rate thresholds

* Today’s algorithms use
CSI but are much more
sophisticated

» E.g., have to deal with more
many more rates, MIMO, etc.
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IP Address Structure

Network ID Node ID

Network ID identifies the network
» CMU =128.2
Node ID identifies node within a network
» Node IDs can be reused in different networks
» Can be assigned independently by local administrator
Size of Network and Node IDs are variable
» Originally Network IDs came in three sizes only
» Variable sized Network IDs are often called a prefix

Great, but what does this have to do with
mobility?
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Outline

* WiFi deployments
» Planning
» Channel selection
» Rate adaptation

* The Internet 102

* Wireless and the Internet

* Mobility: Mobile IP

* TCP and wireless

* Disconnected operation

* Disruption tolerant networks
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Routing and Forwarding in
the Internet

Network ID

Node ID
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Mobility Challenges

When a host moves to a
new network, it gets a
new IP address

How do other hosts
connect to it?
» Assume you provide services
» They have old IP address
How do peers know you
are the same host?
» IP address identifies host
» Associated with the socket
of any active sessions

What assumption is made
here?
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TCP Congestion Control

[111]
« Congestion control avoids that the network is
overloaded
» Must slow down senders to match available bandwidth
» Routers that have a full queue drop packets — inefficient!
* How does sender know the network is
overloaded?
* It looks for dropped packets as a sign of
congestion

* What assumption is made here?
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Main TCP Functions

« Connection management
» Maintain state at endpoints to optimize protocol
* Flow control: avoid that sender outruns the
receiver
» Uses sliding window protocol
* Error control: detect and recover from errors
» Lost, corrupted, and out of order packets
» Congestion control: avoid that senders flood
the network
» Leads to inefficiency and possibly network collapse
» Very hard problem — was not part of original TCP spec!
» Solution is sophisticated (and complex)
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Wireless and the Internet
Challenges

» |IP addresses are used both to forward
packets to a host and to identify the host
» Active session break when a host moves
» Mobile hosts are hard to find

* TCP congestion control interprets packet
losses as a sign of congestion
» Assumes links are reliable, so packet loss = full queue
» Not true for wireless links!
« Applications generally assume that they are
continuously connected to the Internet
» Can access servers, social networks, ...
» Mobile apps must support “disconnected” operations
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Outline

The Internet 102

* Wireless and the Internet
Mobility: Mobile IP

TCP and wireless

+ Disconnected operation
 Disruption tolerant networks
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Network Mobility: Two Simple
Solutions

* Routing: mobile nodes keep “home” IP address
and advertise route to mobile address as /32 in
BGP

» Leverages LPM semantics - should work!!
» Bad idea: scalability

* DNS: mobile nodes get “local” IP address and
update name-address binding in DNS

» DNS allows updates of the address — should
work!!

» Bad idea: results in a lot of write traffic to
DNS

» DNS is not designed for this and reduces
caching benefit
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How about Link Layer Mobility?

 Link layer mobility is easier

* Learning bridges can handle mobility 2 this
is how it is handled at CMU

* Wireless LAN (802.11) also provides some
help to reduce impact of handoff

» The two access points coordinate to reduce latency,
packet loss

* Problem is with inter-network mobility, i.e.
Changing IP addresses

» Want host to always have the same IP address
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More Practical Way to Support
Mobility

* Host gets new IP address in new “foreign”
network
» Simple: use Dynamic Host Configuration (DHCP)
» No impact on Internet routing

* Raises two challenges:

1. Maintaining a TCP connection while mobile: Transport
connections are tied to src/dest IP addresses > What
happens to active connections when a host moves?

2. Finding the host: Host does not have constant address
- how do other devices contact the host?
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How to Handle Transport
Connections for Mobile Nodes?

* Hosts use a 4 tuple to identify a TCP connection
» <Src Addr, Src port, Dst addr, Dst port>
» Change your IP address breaks the connection — hard to fix
» Best approach: add a level of indirection using
two IP addresses

» A “identifier” IP address that identifies the connection on
end-points

» A “locator” IP address that is used in the packets and can
change

» Host does a mapping
+ Security issue: Can someone easily hijack
connection?
+ Difficult to deploy = both ends must support
mobility
* Even better approach: keep the same IP address!
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Finding Mobile Hosts: Mobile IP
* Any host can contact mobile host using its usual “home” IP
address
» Targetis “nomadic” devices: do not move while communicating, i.e.,
laptop
* Home network has a home agent that is responsible for
intercepting packets and forwarding them to the mobile host.
» E.g., router at the edge of the home network
» Forwarding is done using tunneling
* Remote network has a foreign agent that manages
communication with mobile host.
» Module that runs on mobile and the point of contact for the mobile host
+ Binding ties home IP address of mobile host to a “care of”
address in the foreign network.
» binding = (home IP address, foreign IP addess)
27
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Finding Mobile Hosts: Mobile IP

« Communicate with mobile hosts using their
“home” IP address

» Target is “nomadic” devices: do not move while
communicating, i.e., laptop, not cellphone

» Allows any host to contact mobile host using its “usual” IP
address, as if it where in its “normal” location

» Mobility should be transparent to applications
and higher level protocols
» No need to modify the software

* Minimize changes to host and router software
» No changes to communicating host

» Security should not get worse
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Mobile IP Operation

» Registration process: mobile host registers
with home agent.

» Home agents needs to know that it should
intercept packet and forward them

« In foreign network, foreign agent gets local
“care of” address and notifies home agent
» Home agent knows where to forward
packets
* Tunneling
» Home agent forward packets to foreign agent

» Return packets are tunneled in the reverse
direction

« Supporting mobility

» Update binding in home and foreign agents.

Foreign
Agent 2

Peter A. Steenkiste
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Tunneling
IP-in-IP Encapsulation

Registration via Foreign Agent

Traffic CH —
Home Agent — | Original |Original
IP Header | IP Payload

Outer Original | Original
IP header IP Header | IP Payload

/ Other
Optional

Home Agent/IP — Headers
Foreign Agent/care of IP

Mobile Foreign Home
Host Agent Agent
()] 3
@ [ e
® S @

1. FA advertizes service

2. MH requests service

3. FA relays request to HA

4. HA accepts (or denies) request and replies
5. FA relays reply to MH
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Mobility Discussion
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Authentication
Mobile Foreign Home
Host M Agent Agent
3) >
HA
[ €
)
/ Darth Vader will receive all the traffic
destined to the mobile host
Solution: Registration messages between a mobile host
and its home agent must be authenticated
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Obvious optimization: mobile host send return packet
directly to communicating host — not through home agent
» Problem: may look like spoofed traffic to the foreign network

Mobile IP not used in practice
Mobile devices are typically clients, not servers, i.e., they
initiate connections
» The problem Mobile IP solves rare in practice
Mobile IP is not designed for truly mobile users
» Designed for nomadic users, e.g. visitors to a remote site
IETF defined several solutions that are more efficient

» Also more heavy weight: creates overlay with tunnels and special
“routers”

All solutions are similar: need a “relay” that knows location
of the device
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Outline

* The Internet 102

* Wireless and the Internet

* Mobility: Mobile IP

* TCP and wireless

+ Disconnected operation
 Disruption tolerant networks
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Solution Space

Modify TCP for wireless paths

» Would maintain status quo for wired paths

» What would wireless TCP look like?

» Difficult to do: there are many Internet hosts

» Traditionally, hosts have no information about path properties
Modify TCP for all paths

» Not clear what that modification would be!

» Similar problems: need to modify many hosts
Modify TCP only on the mobile host

» A more practical idea — but what would the change be?
* Keep end hosts the same but tweak things at the
wireless gateway

» Keep end-end TCP happy despite wireless links
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Solution Ideas?

Random
Losses
Server Confuse
TCP
Mobile
Client
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Possible Classification of
Solutions
l Link Layer l l End-to-end Split<connection ‘

/]

[ MTC ‘ ‘ I-TCP | M-TCP |

RLP | AIRMAIL l

'
Reno

[#]0=]
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An Internet Style Approach

+ Use aggressive retransmission in the wireless
network to hide retransmission losses
» Most deployed wireless network in fact do that already
» Would sell few products if they did not
* Wireless losses translate into increased delay

» But TCP roundtrip time estimation is very conservative,
e.g. increases if variance is high

+ Also: persistent high loss rate results in
reduced available bandwidth — congestion
response is appropriate and needed

* Works remarkably well!

» Other solutions only needed for “challenged”
networks
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Disconnected Operation

* Mobility means that devices will occasionally
be disconnected from the network
» Seconds ... Minutes ... Hours .. Days
» Mostly an issue for clients

» This can confuse systems and applications
that assume a wired/stationary model

» Clients cannot access servers, e.g., mail, calendar
applications, ...

» Distributed file systems
» Systems for back up or systems management
* Must adapt the applications and systems to
make them “disconnection aware”

Peter A. Steenkiste
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Outline

* The Internet 102

* Wireless and the Internet

* Mobility: Mobile IP

* TCP and wireless

* Disconnected operation

* Disruption tolerant networks
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Two Examples

* E-mail: users must be able to “work on” e-
mail offline and operations are performed
when the mobile client is redirected

» Compose, read and delete e-mail
» Possibly others: manage folders, etc.

« Calendars and tasks are similar: operations

performed offline must be executed later
» Adding or removing appointment and tasks, ...

* Must sometimes resolve conflicts when

multiple clients are used offline

» E.g., mail is deleted on one client and moved to another
folder on another — delete or keep?

» Tend to be minor — ask user for help if needed
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More Complex Case:
File System

» A distributed file system can be accessed
from many computers
» Files tend to be cached in the computers

» Creates opportunities for inconsistencies

» E.g., a file is modified on two different computers — how
do you merge the changes? Who is responsible?

* The consistency model depends on the file
system

» Stronger consistency requires that the system can keep
track of all copies and remove/lock them if needed

» Disconnected operation makes the
consistency problem harder!
» Some file copies my be inaccessible for long periods!

Peter A. Steenkiste
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* The Internet 102

* Wireless and the Internet

* Mobility: Mobile IP

* TCP and wireless

+ Disconnected operation
 Disruption tolerant networks
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Based on slides by Kevin Fall
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Mobility is Common Today

* Many applications are designed to work on
mobile clients so they deal properly with
disconnections

» Many apps on mobile devices are designed for mobility
» Most clients server applications can work offline with at
least partial functionality

* Does not work for interactive applications

» Games, etc.
« Disconnection can still be very inconvenient
» Need state that is not cached on your client device
» Things like back ups cannot be performed
» Unpredictable delays in communication
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Challenged Networks

* Violate one or more of Internet’s assumptions
» End-points may rarely/never be online at the same time
» Very long delay path, frequent disconnections, ...

» Have naming semantics for their particular application
domain

» Not be well served by the current end-to-end TCP/IP
* Examples

» Terrestrial mobile networks

» Some ad-hoc networks

» Sensor/actuator networks
* Goals for “disruption tolerant” networks

» Achieve interoperability between very diverse types
networks

» Sometimes also called disruption tolerant

Peter A. Steenkiste
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Background

Mobile network .~

.

Movement

Sensor network
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Example DTN

T
UserHost
{A, UserHost}

~CBCETET

== DTN gateway
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High-level Architecture

» Characteristics:

» Operate as an overlay above the existing transport layers

» Based on an abstraction of message switching
— Bundle

— Bundle forwarder (DTN gateway)
— Store-and-forward gateway function between different networks

source DTN gateway

DTN gateway destination

» Constituent of DTN architecture

» Region: internally homogenous, i.e. same network stack,
addressing, ...

» DTN gateway: Interconnection point between region boundaries
» Name Tuple: {Region name, Entity name}
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