

18-452/18-750
Wireless Networks and Applications
Lecture 6: Physical Layer
Spread Spectrum and OFDM

Peter Steenkiste
Carnegie Mellon University

Spring Semester 2018
<http://www.cs.cmu.edu/~prs/wirelessS18/>

Peter A. Steenkiste

1

Spread Spectrum

- Spread transmission over a wider bandwidth
 - » Don't put all your eggs in one basket!
- Also useful to minimize impact of a “bad” frequency in regular environments
- Good for military: jamming and interception becomes harder
- Drawback: you use more spectrum
- What can be gained from this apparent waste of spectrum?
 - » Immunity from various kinds of noise and multipath distortion
 - » Can be used for hiding and encrypting signals
 - » Several users can independently use the same higher bandwidth with very little interference

Peter A. Steenkiste

3

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
 - » Space, time and frequency diversity
- OFDM

Peter A. Steenkiste

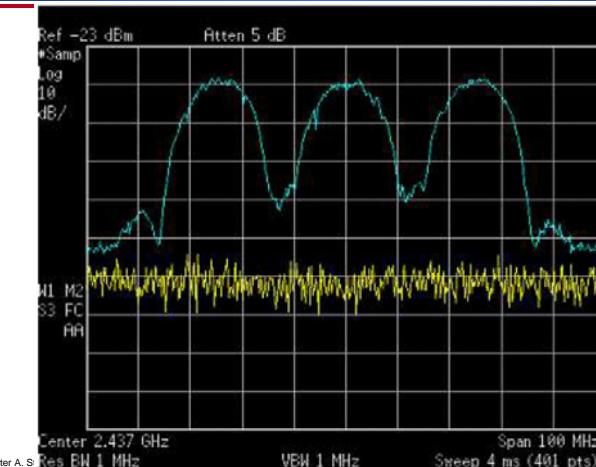
2

Frequency Hopping Spread Spectrum (FHSS)

- Have the transmitter hop between a seemingly random sequence of frequencies
 - » Each frequency has the bandwidth of the original signal
- Dwell time is the time spent using one frequency
- Spreading code determines the hopping sequence
 - » Must be shared by sender and receiver (e.g. standardized)

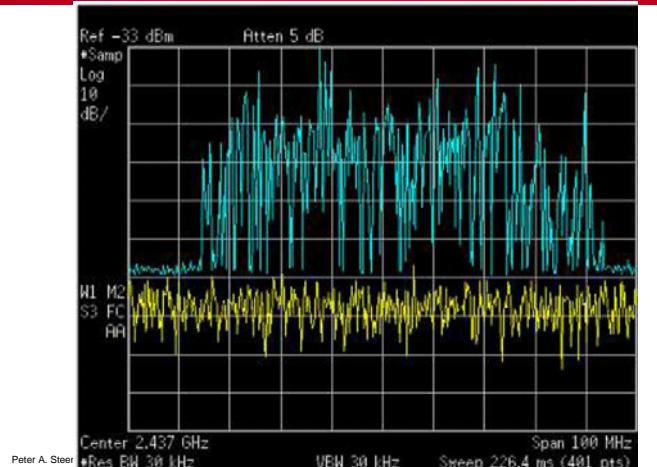
Peter A. Steenkiste

4


Example: Bluetooth

- Uses frequency hopping spread spectrum in the 2.4 GHz ISM band
- Uses 79 frequencies with a spacing of 1 MHz
 - » Other countries use different numbers of frequencies
- Frequency hopping rate is 1600 hops/s
- Signal uses GFSK
 - » Minimum deviation is 115 KHz
- Maximum data rate is 1 MHz
- Also used in the original WiFi standard

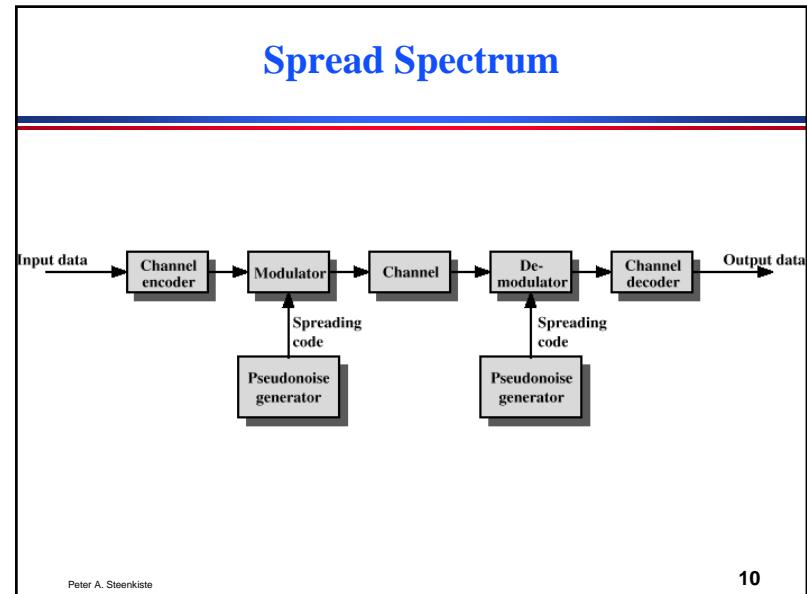
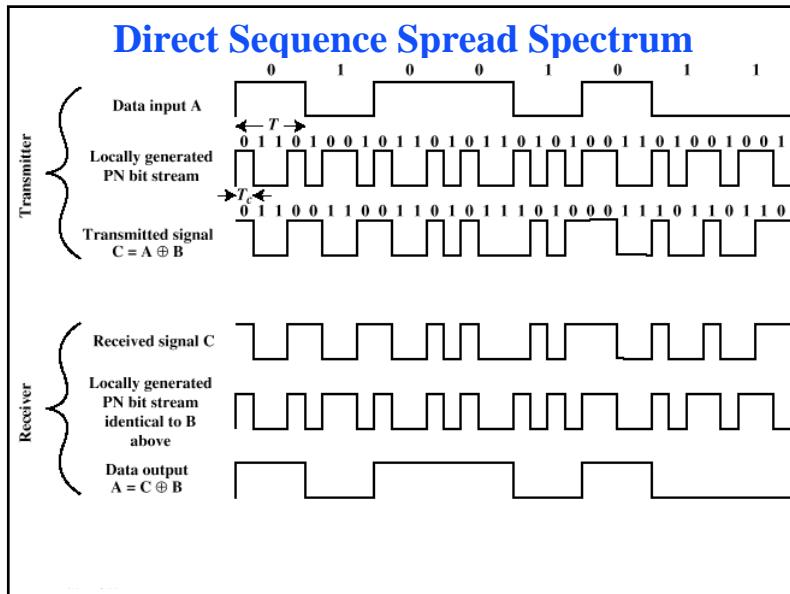
Peter A. Steenkiste


5

802.11 Spectrogram

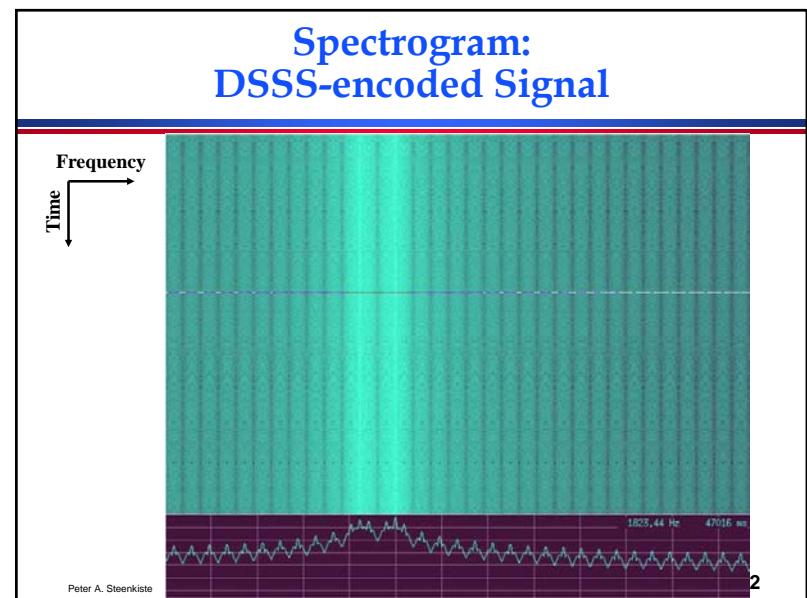
6

Frequency Hopping Spectrogram



7

Direct Sequence Spread Spectrum (DSSS)

- Each bit in original signal is represented by multiple bits (chips) in the transmitted signal
- Spreading code spreads signal across a wider frequency band
 - » Spread is in direct proportion to number of bits used
 - » E.g. exclusive-OR of the bits with the spreading code
- The resulting bit stream is used to modulate the signal



8

Example: Original 802.11 Standard (DSSS)

- The DS PHY uses a 1 Msymbol/s rate with an 11-to-1 spreading ratio and a Barker chipping sequence
 - » Barker sequence has low autocorrelation properties – why?
 - » Uses about 22 MHz
- Receiver decodes by counting the number of “1” bits in each word
 - » 6 “1” bits correspond to a 0 data bit
- Chips were transmitted using DBPSK modulation
 - » Resulting data rate is 1 Mbps (i.e. 11 Mchips/sec)
 - » Extended to 2 Mbps by using a DQPSK modulation
 - Requires the detection of a ¼ phase shift

DSSS Properties

- Since each bit is sent as multiple chips, you need more bps bandwidth to send the signal.
 - » Number of chips per bit is called the spreading ratio
- Given the Nyquist and Shannon results, you need more spectral bandwidth to do this.
 - » Spreading the signal over the spectrum
- Advantage is that transmission is more resilient.
 - » Effective against noise and multi-path
 - » DSSS signal will look like noise in a narrow band
 - » Can lose some chips in a word and recover easily
- Multiple users can share bandwidth (easily).
 - » Follows directly from Shannon (capacity is there)
 - » E.g., Code Division Multiple Access - next

Peter A. Steenkiste

13

Code Division Multiple Access

- Users use a spectrum band at the same time, but they use different codes to spread their data over the frequency
 - » DSSS where users use different spreading sequences
 - » Use spreading sequences that are orthogonal, i.e. they have minimal overlap
- The signal of other users will appear as noise
 - » But since each user uses a lot of spectrum their signal is very robust
- Offers an easy way to share spectrum
 - » Adding users will increase the noise for each user
 - » This will reduce their throughput – sharing!

Peter A. Steenkiste

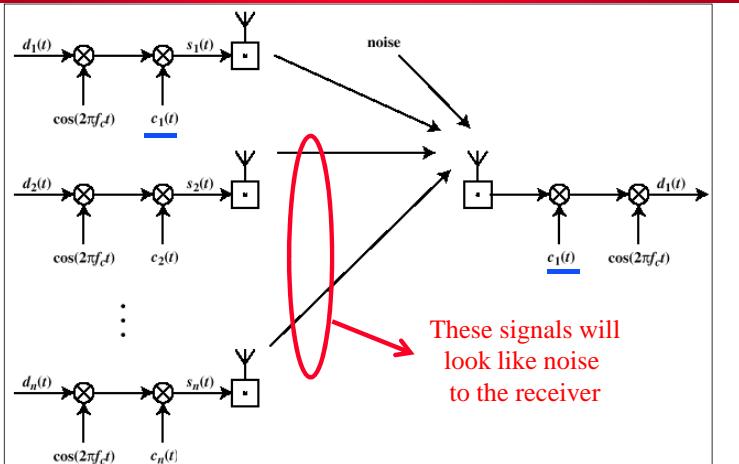
14

CDMA Principle

- Basic Principles of CDMA
 - » D = rate of data signal
 - » Break each bit into k chips - user-specific fixed pattern
 - » Chip data rate of new channel = kD
- If $k=6$ and code is a sequence of 1s and -1s
 - » For a '1' bit, A sends code as chip pattern
 - $\langle c1, c2, c3, c4, c5, c6 \rangle$
 - » For a '0' bit, A sends complement of code
 - $\langle -c1, -c2, -c3, -c4, -c5, -c6 \rangle$
- Receiver knows sender's code and performs electronic decode function
$$S_u(d) = d1 \times c1 + d2 \times c2 + d3 \times c3 + d4 \times c4 + d5 \times c5 + d6 \times c6$$
 - $\langle d1, d2, d3, d4, d5, d6 \rangle$ = received chip pattern
 - $\langle c1, c2, c3, c4, c5, c6 \rangle$ = sender's code

Peter A. Steenkiste

15


CDMA Example

- User A code = $\langle 1, -1, -1, 1, -1, 1 \rangle$
 - » To send a 1 bit = $\langle 1, -1, -1, 1, -1, 1 \rangle$
 - » To send a 0 bit = $\langle -1, 1, 1, -1, 1, -1 \rangle$
- User B code = $\langle 1, 1, -1, -1, 1, 1 \rangle$
 - » To send a 1 bit = $\langle 1, 1, -1, -1, 1, 1 \rangle$
- Receiver receiving with A's code
 - » (A's code) \times (received chip pattern)
 - User A '1' bit: 6 \rightarrow 1
 - User A '0' bit: -6 \rightarrow 0
 - User B '1' bit: 0 \rightarrow unwanted signal ignored

Peter A. Steenkiste

16

CDMA for Direct Sequence Spread Spectrum

CDMA Discussion

- CDMA does not assign a fixed bandwidth but a user's bandwidth depends on the traffic load
 - » More users results in more "noise" and less throughput for each user, e.g. more information lost due to errors
 - » How graceful the degradation is depends on how orthogonal the codes are
 - » TDMA and FDMA have a fixed channel capacity
- Weaker signals may be lost in the clutter
 - » This will systematically put the same node pairs at a disadvantage – not acceptable
 - » The solution is to add power control, i.e. nearby nodes use a lower transmission power than remote nodes

18

Peter A. Steenkiste

CDMA Example

- CDMA cellular standard
 - » 3G standard
 - » Used in the US, e.g. Sprint
- Allocates 1.228 MHz for base station to mobile communication
 - » Shared by 64 "code channels"
 - » Used for voice (55), paging service (8), and control (1)
- Provides a lot error coding to recover from errors
 - » Voice data is 8550 bps
 - » Coding and FEC increase this to 19.2 kbps
 - » Then spread out over 1.228 MHz using DSSS; uses QPSK

Peter A. Steenkiste

19

Summary

- Spread spectrum achieves robustness by spreading out the signal over a wide channel
 - » Sending different data blocks on different frequencies, or
 - » Spreading all data across the entire channel
- CDMA builds on the same concept by allowing multiple senders to simultaneously use the same channel
 - » Sender and receiver must coordinate so receiver can decode the data

Peter A. Steenkiste

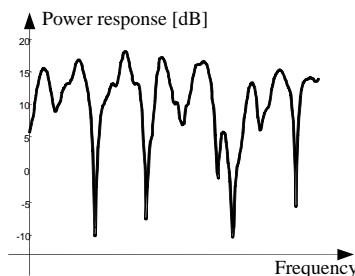
20

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

21


How Do We Increase Rates?

- Two challenges related to multipath:
- Frequency selective fading starts to have a bigger impact because there is less redundancy in the signal
- As rates increase, symbol times shrink and the effects of inter-symbol interference becomes more pronounced
 - » See earlier examples
- We would like an encoding and modulation solution that has longer symbol times and allows us to fight frequency selective fading more effectively

Peter A. Steenkiste

22

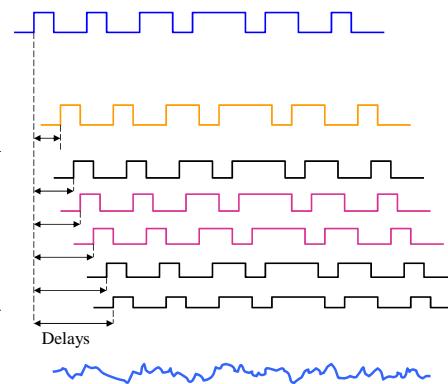
Frequency-Selective Radio Channel

- Interference of reflected and LOS radio waves results in frequency dependent fading
- Impact is reduced for narrow channels

Peter A. Steenkiste

23

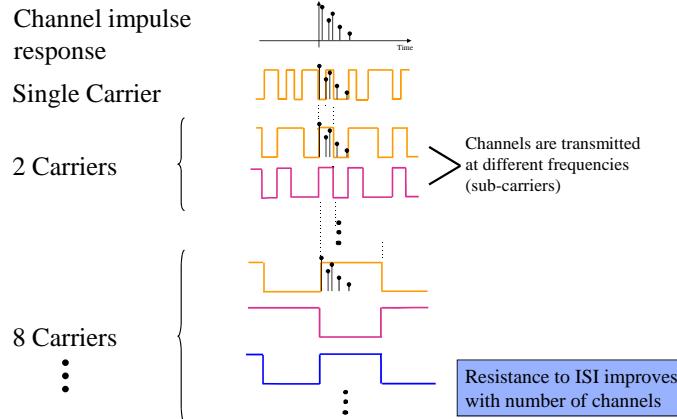
Inter-Symbol-Interference


Transmitted signal:

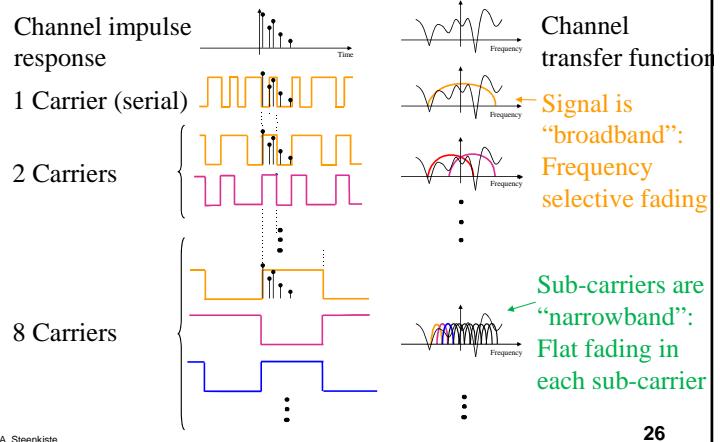
Received Signals:

Line-of-sight:

Reflected:


The symbols add up on the channel
→ Distortion!

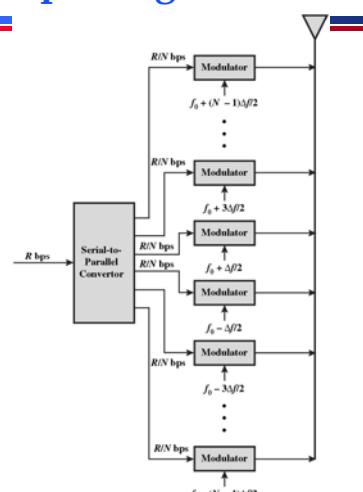
Peter A. Steenkiste


24

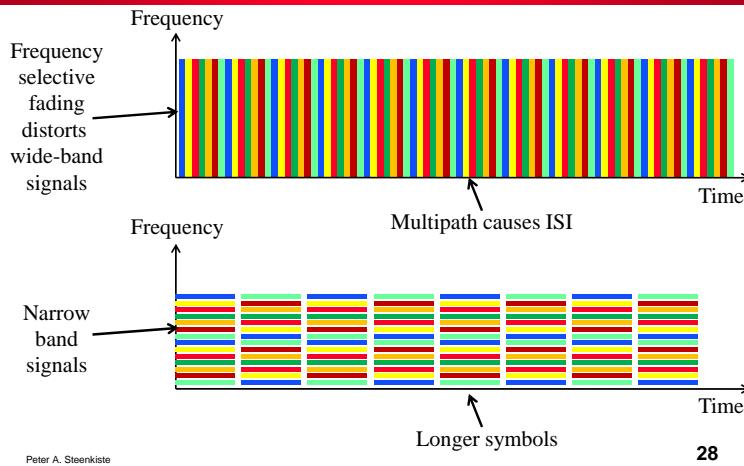
Distributing Bits over Subcarriers

Peter A. Steenkiste

Benefits of Narrow Band Channels



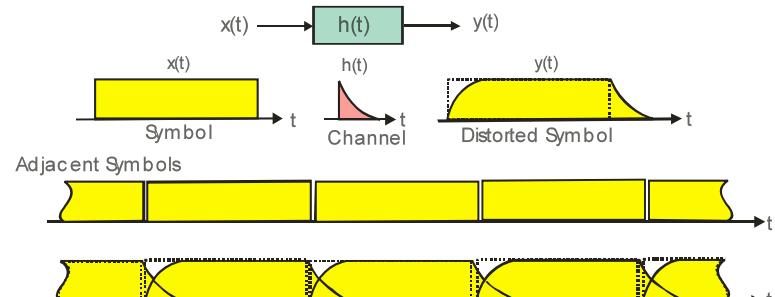
Peter A. Steenkiste


OFDM - Orthogonal Frequency Division Multiplexing

- Distribute bits over N subcarriers that use different frequencies in the band B
 - » Multi-carrier modulation
 - » Each signal uses $\sim B/N$ bandwidth
- Since each subcarrier only encodes $1/N$ of the bit stream, each symbol takes N times longer in time
- Since signals are narrower, fighting frequency selective fading is easier

Peter A. Steenkiste

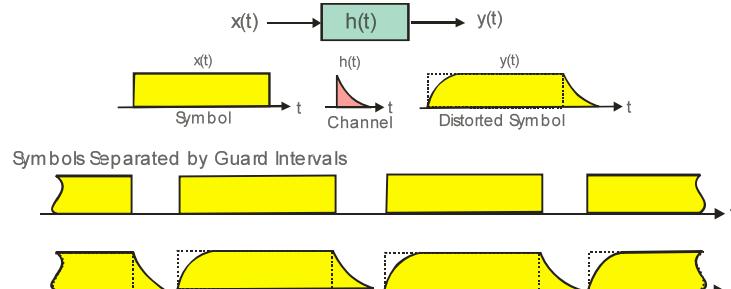
OFDM Transmission


Fighting ISI

- Frequency selective fading will only affects some subcarriers
 - » May be able to simply amplify affected subcarriers
 - » No need for complex dynamic equalizer
 - Become less effective with shorter symbols
- Further reduce ISI effects by sending a “cyclic prefix” before every burst of symbols
 - » Can be used to absorb delayed copies of real symbols, without affecting the symbols in the next burst
 - » Prefix is a copy of the tail of the symbol burst to maintain a smooth symbol
 - » E.g. a cyclic prefix of 64 symbols and data bursts of 256 symbols using QPSK modulation

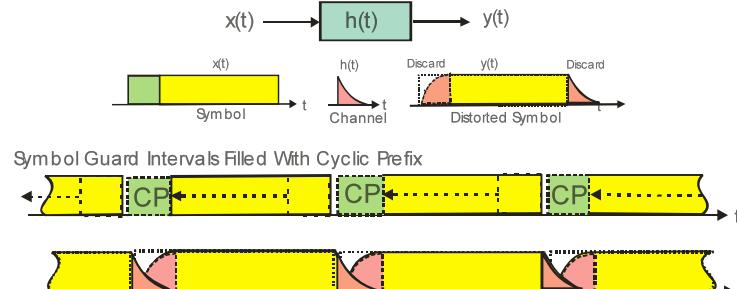
Peter A. Steenkiste

29


Adjacent Symbol Interference (ASI) Symbol Smearing Due to Channel

Peter A. Steenkiste

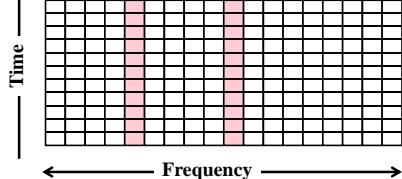
Slide Prof Harris, SDSU 30


Guard Interval Inserted Between Adjacent Symbols to Suppress ASI

Peter A. Steenkiste

Slide Prof Harris, SDSU 31

Cyclic Prefix Inserted in Guard Interval to Suppress Adjacent Channel Interference (ACI)



Peter A. Steenkiste

Slide Prof Harris, SDSU 32

Use of Redundancy in OFDM

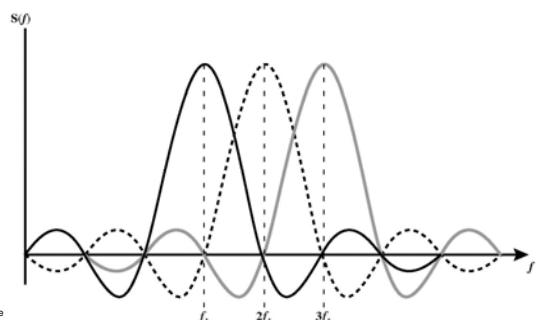
- OFDM uses error coding as described earlier
 - » Degree of error coding depends on channel conditions
- OFDM offers frequency and diversity
 - » Frequency: data is spread out over multiple subcarriers
 - » Time: data spread out over multiple time slots

- Combining OFDM with MIMO adds space diversity (discussed later in course)

Peter A. Steenkiste

33

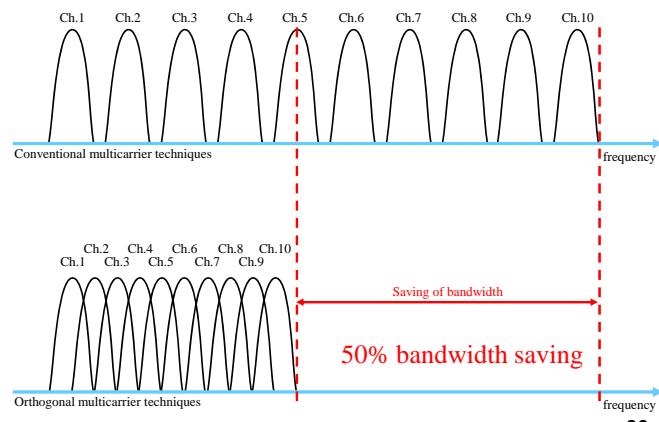
Implementing OFDM


- This is great, but OFDM looks very complicated!
- How many radios do I need? 48?
- How do I get 48 (or more) subcarriers packed very densely?
- Do I need guard bands between the subcarriers, and if so, how wide?
 - » Looks like a lot of wasted spectrum

Peter A. Steenkiste

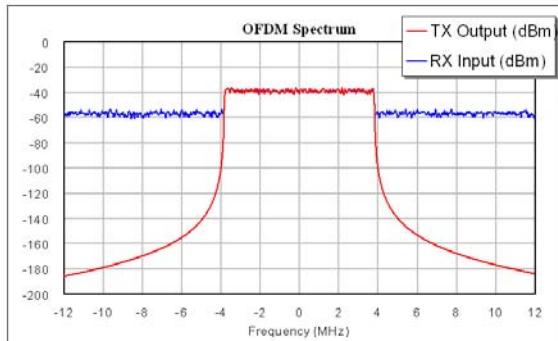
34

Subcarriers are “Orthogonal”


- Peaks of spectral density of each carrier coincide with the zeros of the other carriers
 - » Carriers can be packed very densely with minimal interference
 - » Requires very good control over frequencies

Peter A. Steenkiste

35


Densely Packing OFDM Channels

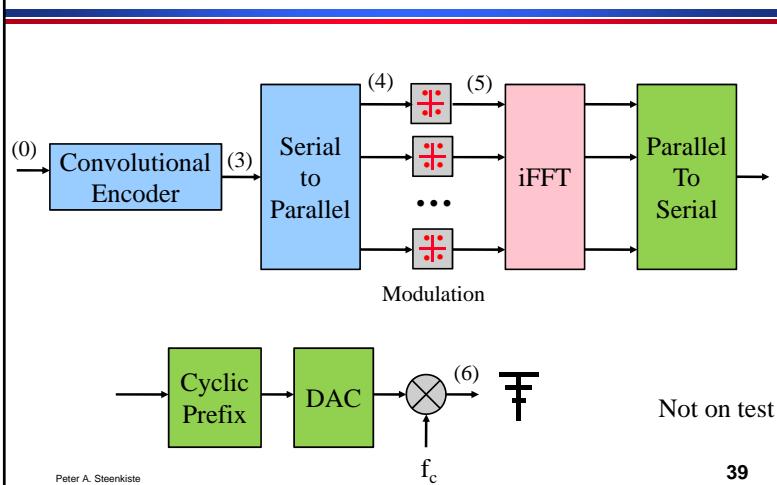
Peter A. Steenkiste

36

OFDM Spectrum Use

Peter A. Steenkiste

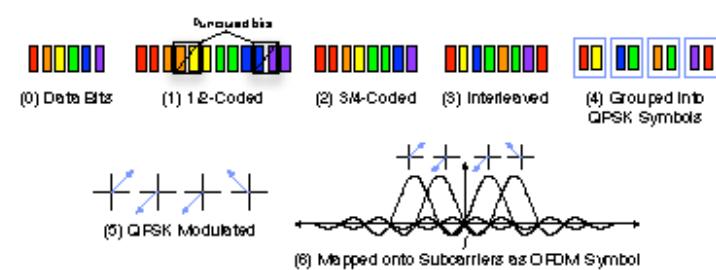
37


Implementing OFDM

- The naïve approach is to modulate individual subcarriers and move them each to the right frequency
 - » Not practical: the subcarriers are packed very densely and their spacing must be very precise
 - » Also complicated: lots of signals to deal with!
- How it works: Radio modulates the subcarriers and combines them in the digital domain and then converts the signal to the analog domain
 - » The details do not matter for this course

Peter A. Steenkiste

38


OFDM Transmitter

Peter A. Steenkiste

39

OFDM in 802.11

- Uses punctured code: add redundancy and then drop some bits to reach a certain level of redundancy

Peter A. Steenkiste

40

OFDM in WiFi

- OFDM is used in all “post b” WiFi standard
- Example: 802.11a
- 20 MHz band, with a signal of 16.6 MHz
- 52 subcarriers: 48 for data, 4 pilots
- Modulations: BPSK, QPSK, 16-QAM, 64-QAM
- 4 microsec symbol duration, including a 0.8 microsec guard interval
- Modulation and coding scheme determines the bit rates
 - » Next slide

Peter A. Steenkiste

41

MCS for 802.11a

MCS index	RATE bits	Modulation type	Coding rate	Data rate (Mbit/s)
13	1101	BPSK	1/2	6
16	1111	BPSK	3/4	9
5	0101	QPSK	1/2	12
7	0111	QPSK	3/4	18
9	1001	16-QAM	1/2	24
11	1011	16-QAM	3/4	36
1	0001	64-QAM	2/3	48
3	0011	64-QAM	3/4	54

Symbol rate is 12 Msymbols/sec

Peter A. Steenkiste

42

Discussion

- OFDM is very effective in fighting frequency selective fading and ISI
- Finally a free lunch?
- No – you introduce some overhead
 - » Frequency: you need space between the sub carriers
 - » Time: You need to insert prefixes
- You also add complexity
 - » How do you create many, closely spaced subcarriers?
 - » The OFDM signal is fairly flat in the frequency domain, so it is very variable in the time domain
 - High peak-to-average Power ratio (PAPR)
 - Can be a problem for simple, mobile devices

Peter A. Steenkiste

43

Summary

- OFDM fights frequency selective fading and inter-symbol interface to increase rates
 - » Both become more significant at higher rates
 - » It modules a large number of narrow-band signals (subcarriers) instead of a single wide channel
 - » Cyclic prefixes are used to separate symbols
- It uses time and frequency diversity, combined with coding (FEC) to reduce the effect of fading
 - » Can “pick” the right bit rate for the observed channel conditions by adjusting both the modulation and coding parameters

Peter A. Steenkiste

44