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Spread Spectrum

e Spread transmission over a wider bandwidth
» Don’t put all your eggs in one basket!

* Also useful to minimize impact of a “bad”
frequency in regular environments

* Good for military: jamming and interception
becomes harder

» Drawback: you use more spectrum

* What can be gained from this apparent waste
of spectrum?

» Immunity from various kinds of noise and multipath
distortion

» Can be used for hiding and encrypting signals

» Several users can independently use the same higher
bandwidth with very little interference
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Outline

* RF introduction

¢ Modulation and multiplexing

e Channel capacity

* Antennas and signal propagation
* Modulation

« Diversity and coding

» Space, time and frequency diversilty/‘&);f.
e OFDM

Typical
“—Bad News
¢ o :Good News
' Story

—
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Frequency Hopping Spread
Spectrum (FHSS)

* Have the transmitter hop between a seemingly
random sequence of frequencies
» Each frequency has the bandwidth of the original signal

e Dwell time is the time spent using one
frequency

» Spreading code determines the hopping
sequence
» Must be shared by sender and receiver (e.g. standardized)

Frequencyf - - - - - - c c e —————— -
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Example:
Bluetooth

* Uses frequency hopping spread spectrum in
the 2.4 GHz ISM band

* Uses 79 frequencies with a spacing of 1 MHz
» Other countries use different numbers of frequencies

* Frequency hopping rate is 1600 hops/s
* Signal uses GFSK

» Mimimum deviation is 115 KHz
e Maximum datarate is 1 MHz

* Also used in the original WiFi standard
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Frequency Hopping Spectrogram
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Direct Sequence Spread Spectrum
(DSSS)

« Each bit in original signal is represented by
multiple bits (chips) in the transmitted signal

» Spreading code spreads signal across a
wider frequency band
» Spread is in direct proportion to number of bits used
» E.g. exclusive-OR of the bits with the spreading code

e The resulting bit stream is used to modulate

0
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XOR
Y L >
Transmitted Chips 1 1 01

Modulated Signal | I | I | I | I | I | I |
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Transmitter

Receiver

Direct Sequence Spread Spectrum
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Data input A |
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PN bit stream
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Transmilted signal
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identical to B
ahove

Data output
A=C®B

Example:
Original 802.11 Standard (DSSS)

e The DS PHY uses a 1 Msymbol/s rate with an 11-
to-1 spreading ratio and a Barker chipping
sequence

» Barker sequence has low autocorrelation properties —why?
» Uses about 22 MHz
* Receiver decodes by counting the number of “1”
bits in each word
» 6“1” bits correspond to a 0 data bit
* Chips were transmitted using DBPSK modulation
» Resulting data rate is1 Mbps (i.e. 11 Mchips/sec)
» Extended to 2 Mbps by using a DQPSK modulation
— Requires the detection of a % phase shift
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Spread Spectrum

Input data Output data

Channel
encoder

Channel

decoder

Spreading
code
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Spreading
code

Psendonoise
generator
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Spectrogram:
DSSS-encoded Signal
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DSSS Properties

» Since each bit is sent as multiple chips, you
need more bps bandwidth to send the signal.
» Number of chips per bit is called the spreading ratio
» Given the Nyquist and Shannon results, you
need more spectral bandwidth to do this.
» Spreading the signal over the spectrum
* Advantage is that is transmission is more
resilient.
» Effective against noise and multi-path
» DSSS signal will look like noise in a narrow band
» Can lose some chips in aword and recover easily
Multiple users can share bandwidth (easily).
» Follows directly from Shannon (capacity is there)
» E.g., Code Division Multiple Access - next
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CDMA Principle

* Basic Principles of CDMA
» D =rate of data signal
» Break each bit into k chips - user-specific fixed pattern
» Chip data rate of new channel =kD
« If k=6 and code is a sequence of 1s and -1s
» For a‘l’ bit, A sends code as chip pattern
— <cl,c2,¢c3, c4,c5, c6>
» For a ‘0’ bit, A sends complement of code
— <-cl, -c2, -c3, -c4, -c5, -c6>
« Receiver knows sender’s code and performs electronic
decode function

S,(d)=d1xcl+d2xc2+d3xc3+d4xca+d5xc5+d6xCH

— <d1, d2, d3, d4, d5, d6> = received chip pattern
— <cl, c2, c3, c4, c5, c6> = sender’s code
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Code Division Multiple Access

* Users use a spectrum band at the same time,
but they use different codes to spread their
data over the frequency

» DSSS where users use different spreading sequences
» Use spreading sequences that are orthogonal, i.e. they
have minimal overlap

* The signal of other users will appear as noise

» But since the each user uses a lot of spectrum their
signal is very robust

» Offers an easy way to share spectrum

» Adding users will increase the noise for each user
» This will reduce their throughput — sharing!
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CDMA Example

e User Acode=<1,-1,-1,1,-1, 1>
» Tosend albit=<1,-1,-1,1, -1, 1>
» TosendaObit=<-1,1,1,-1,1, -1>
e UserBcode=<1,1,-1,-1,1, 1>
» Tosendalbit=<1,1,-1,-1,1, 1>
* Receiver receiving with A’s code
» (A’s code) x (received chip pattern)
— User A‘l' bit: 6->1
— User A ‘0O’ bit: -6 ->0
— User B ‘1’ bit: 0 -> unwanted signal ignored
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CDMA for Direct Sequence Spread

Spectrum
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CDMA Example

Peter A.

* CDMA cellular standard
» 3G standard
» Used in the US, e.g. Sprint

* Allocates 1.228 MHz for base station to
mobile communication
» Shared by 64 “code channels”
» Used for voice (55), paging service (8), and control (1)
» Provides a lot error coding to recover from
errors
» Voice data is 8550 bps
» Coding and FEC increase this to 19.2 kbps
» Then spread out over 1.228 MHz using DSSS; uses QPSK
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CDMA Discussion

 CDMA does not assign a fixed bandwidth but a
user’s bandwidth depends on the traffic load

» More users results in more “noise” and less throughput for
each user, e.g. more information lost due to errors

» How graceful the degradation is depends on how
orthogonal the codes are

» TDMA and FDMA have a fixed channel capacity

* Weaker signals may be lost in the clutter

» This will systematically put the same node pairs at a
disadvantage — not acceptable

» The solution is to add power control, i.e. nearby nodes use
alower transmission power than remote nodes
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Summary

e Spread spectrum achieves robustness by
spreading out the signal over a wide channel
» Sending different data blocks on different frequencies, or
» Spreading all data across the entire channel
¢ CDMA builds on the same concept by
allowing multiple senders to simultaneously
use the same channel

» Sender and receive must coordinate so receiver can
decode the data
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Outline

* RF introduction

* Modulation and multiplexing

e Channel capacity

* Antennas and signal propagation
* Modulation

» Diversity and coding

< OFDM
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Frequency-Selective
Radio Channel

Power response [dB]

e
| Frequency

* Interference of reflected and LOS radio waves
results in frequency dependent fading

e Impact is reduced for narrow channels
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How Do We Increase Rates?

« Two challenges related to multipath:

e Frequency selective fading starts to have a
bigger impact because there is less
redundancy in the signal

e As rates increase, symbol times shrink and
the effects of inter-symbol interference
becomes more pronounced

» See earlier examples

* We would like an encoding and modulation
solution that has longer symbol times and
allows us to fight frequency selective fading
more effectively
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Inter-Symbol-Interference
Transmitted signal:
Received Signals: |
Line-of-sight: =
oo err
S Ny Ty 6y B I
Reflected: Jrrrr e rr
! L rrr w0 rrr_
: R, N o NN e e e NN o B
The symbols add up Delays
on the channel AN AN S M AN -
- Distortion!

Peter A. Steenkiste




Distributing Bits over Subcarriers

Channel impulse
response

Time

hh,
Iﬂt

Single Carrier

Channels are transmitted

. 1 ! !
2 Carriers > at different frequencies
(sub-carriers)
IﬂTv
8 Carriers LI

.
: m Resistance to ISI improves

with number of channels
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OFDM - Orthogonal Frequency
Division Multiplexing

« Distribute bits over N it
subcarriers that use PRI
different frequencies in the :
band B RIN s [

» Multi-carrier modulation

» Each signal uses ~B/N bandwidth - i
e Since each subcarrier only  ,,, | smae fevee N
t e B fovam
encodes 1/N of the bit o —

stream, each symbol takes = .
N times longer in time
Medulator

« Since signals are narrower, e
. . . A Y]
fighting frequency selective e
fading is easier :

=
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Benefits of Narrow Band Channels

V™ Freavency
V™ Frequensy
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Fighting ISI

* Frequency selective fading will only affects
some subcarriers
» May be able to simply amplify affected subcarriers
» No need for complex dynamic equalizer
— Become less effective with shorter symbols

e Further reduce ISI effects by sending a “cyclic
prefix” before every burst of symbols

» Can be used to absorb delayed copies of real symbols,
without affecting the symbols in the next burst

» Prefix is a copy of the tail of the symbol burst to maintain a
smooth symbol

» E.g. acyclic prefix of 64 symbols and data bursts of 256
symbols using QPSK modulation
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Guard Interval Inserted Between Adjacent
Symbols to Suppress ASI
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Adjacent Symbol Interference (ASI)
Symbol Smearing Due to Channel
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Cyclic Prefix Inserted in Guard Interval to Suppress
Adjacent Channel Interference (ACI)
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r

Distorted Symbol

t
Symbol Channel

Symbol Guard Intervals Filled With Cyclic Prefix
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Use of Redundancy in OFDM

« OFDM uses error coding as described earlier
» Degree of error coding depends on channel conditions
« OFDM offers frequency and diversity
» Frequency: data is spread out over multiple subcarriers
» Time: data spread out over multiple time slots

Time —>

<« Frequency ——— >

e Combining OFDM with MIMO adds space
diversity (discussed later in course)
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Subcarriers are “Orthogonal”

» Peaks of spectral density of each carrier coincide

with the zeros of the other carriers

» Carriers can be packed very densely with minimal interference

» Requires very good control over frequencies
SN
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Implementing OFDM

e This is great, but OFDM looks very
complicated!

* How many radios do | need? 487?

e How do | get 48 (or more) subcarriers packed
very densely?

e Do | need guard bands between the
subcarriers, and if so, how wide?
» Looks like a lot of wasted spectrum
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Densely Packing
OFDM Channels

Ch.5 Ch.10

AANAAAN

Conventional multicarrier techniques Ifrequency
[}
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Chs Cl

Ch.2 Ch.8 Ch.10
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Saving of bandwidth

50% bandwidth saving

Orthogonal multicarrier techniques T frequency
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OFDM Spectrum Use
= OFDM Spectimun —TX Output (dBm
20 —RX Input (dEm)
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Implementing OFDM

e The naive approach is to modulate individual
subcarriers and move them each to the right
frequency

» Not practical: the subcarriers are packed very densely
and their spacing must be very precise

» Also complicated: lots of signals to deal with!

* How it works: Radio modulates the
subcarriers and combines them in the digital
domain and then converts the signal to the
analog domain

» The details do not matter for this course

38
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OFDM in 802.11

Muroued bia

NO0OND  NOCGEKOOME BOOCODRE EOMDDORE (oo om

[0) Date Eits [1] 12-Coded [ SM-Coded (3] Intsemed (4] EFoupsd I

QPSE Synbala

NENBIEIRE ik
[5] @FSK Modukted ;
£ bR ppsd anto Subcarrlers ma O FOR Swnbal

* Uses punctured code: add redundancy and
then drop some bits to reach a certain level of
redundancy
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OFDM in WiFi

« OFDM is used in all “post b” WiFi standard

* Example: 802.11a

¢ 20 MHz band, with a signal of 16.6 MHz

e 52 subcarriers: 48 for data, 4 pilots

e Modulations: BPSK, QPSK, 16-QAM, 64-QAM

* 4 microsec symbol duration, including a 0.8
microsec guard interval

* Modulation and coding scheme determines
the bit rates
» Next slide
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Discussion

* OFDM is very effective in fighting frequency
selective fading and ISl

* Finally a free lunch?

* No —you introduce some overhead
» Frequency: you need space between the sub carriers
» Time: You need to insert prefixes

* You also add complexity
» How do you create many, closely spaced subcarriers?

» The OFDM signal is fairly flat in the frequency domain, so
it is very variable in the time domain

— High peak-to-average Power ratio (PAPR)
— Can be a problem for simple, mobile devices

Peter A. Steenkiste
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MCS for 802.11a

RATE bits Mof;gzt'c’” D(f\‘/ltzi tr/zt)e

13 1101 12 6
16 111 34 9
5 0101 12 12
7 0111 34 18
9 1001 16 12 24
1 1011 16 34 36

0001  64- 213 48

0011 64 34 54

Symbol rate is 12 Msymbols/sec
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Summary

» OFDM fights frequency selective fading and
inter-symbol interface to increase rates
» Both become more significant at higher rates

» It modules a large number of narrow-band signals
(subcarriers) instead of a single wide channel

» Cyclic prefixes are used to separate symbols

It uses time and frequency diversity,
combined with coding (FEC) to reduce the
effect of fading

» Can “pick” the right bit rate for the observed channel
conditions by adjusting both the modulation and coding
parameters
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