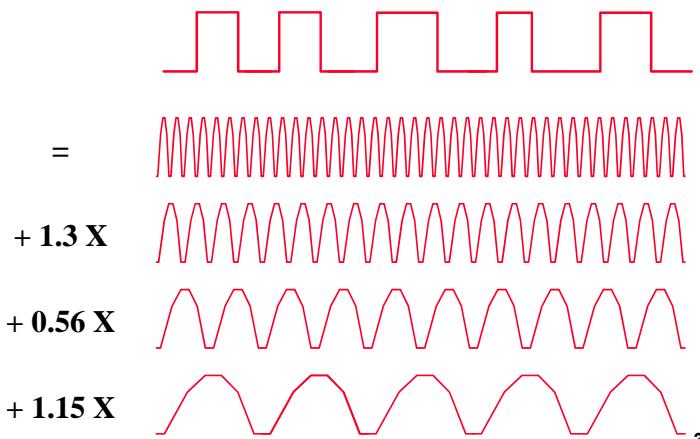


18-452/18-750
Wireless Networks and Applications
Lecture 3: Physical Layer
Signals, Modulation, Multiplexing

Peter Steenkiste
Carnegie Mellon University


Spring Semester 2018

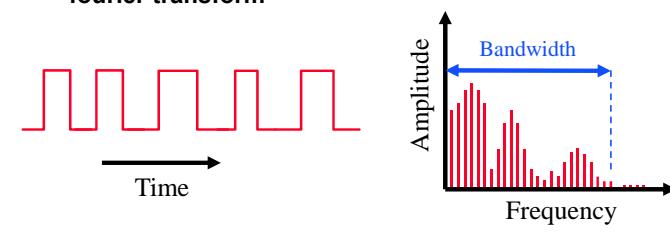
<http://www.cs.cmu.edu/~prs/wirelessS18/>

Peter A. Steenkiste

1

Signal = Sum of Sine Waves

Outline


- RF introduction
 - » A cartoon view
 - » Communication
 - » Time versus frequency view
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

2

The Frequency Domain

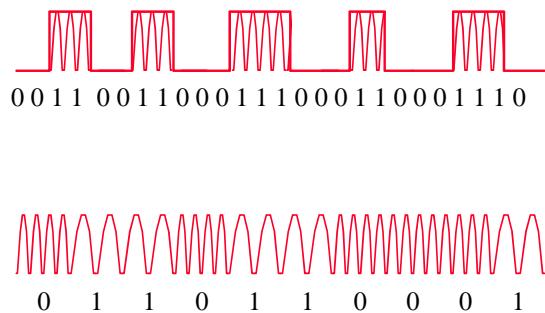
- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
 - Corresponds to energy at a certain frequency
- Every signal has an equivalent representation in the frequency domain.
 - What frequencies are present and what is their strength (energy)
- We can translate between the two formats using a fourier transform

Outline

- RF introduction
- Modulation and multiplexing - review
 - » Analog versus digital signals
 - » Forms of modulation
 - » Baseband versus carrier modulation
 - » Multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

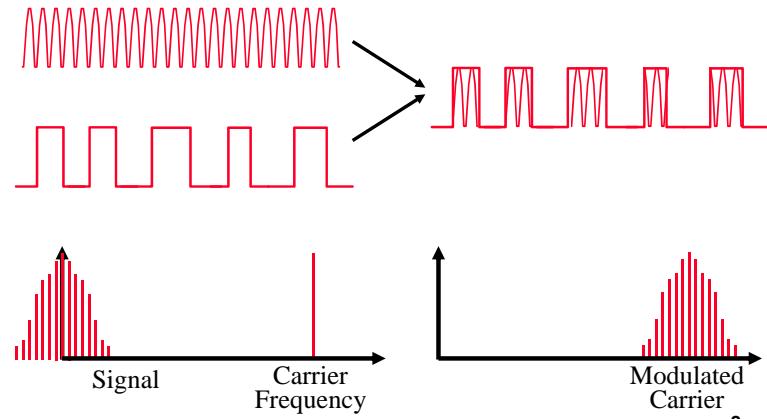
5


Signal Modulation

- Sender sends a “carrier” signal and changes it in a way that the receiver can recognize
 - The carrier is sine wave with fixed amplitude and frequency
- **Amplitude modulation (AM):** change the strength of the carrier based on information
 - High values -> stronger signal
- **Frequency (FM) and phase modulation (PM):** change the frequency or phase of the signal
 - Frequency or Phase shift keying
- **Digital versions are also called “shift keying”**
 - Amplitude (ASK), Frequency (FSK), Phase (PSK) Shift Keying
- Discussed in more detail in a later course

Peter A. Steenkiste

6


Amplitude and Frequency Modulation

Peter A. Steenkiste

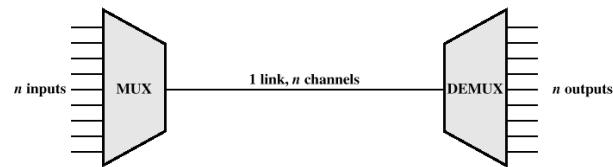
7

Amplitude Carrier Modulation

Peter A. Steenkiste

8

Analog and Digital Signal Modulation

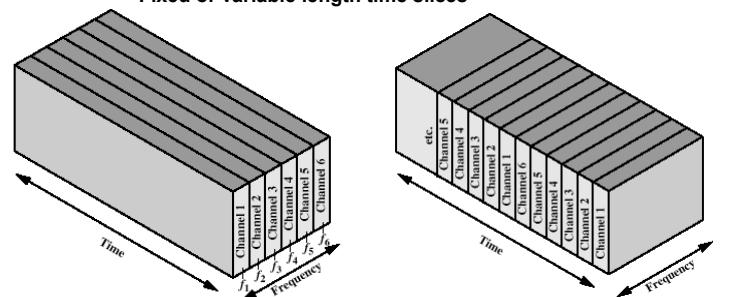

- The signal that is used to modulate the carrier can be **analog or digital**
 - » Analog: broadcast radio (AM/FM)
 - » Digital: WiFi, LTE
- **Analog: a continuously varying signal**
 - » Cannot recover from distortions, noise
 - » Can amplify the signal but also amplifies the noise
- **Digital: discrete changes in the signal that correspond to a digital signal**
 - » Can recover from noise and distortion:
 - » Regenerate signal along the path: demodulate + remodulate

Peter A. Steenkiste

9

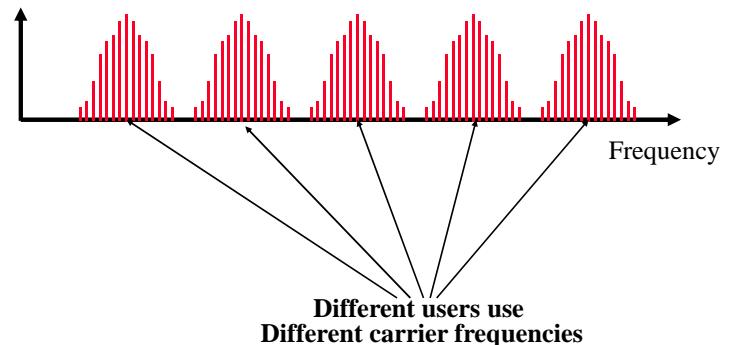
Multiplexing

- Capacity of the transmission medium usually exceeds the capacity required for a single signal
- **Multiplexing - carrying multiple signals on a single medium**
 - » More efficient use of transmission medium
- **A must for wireless – spectrum is huge!**
 - » Signals must differ in frequency (spectrum), time, or space



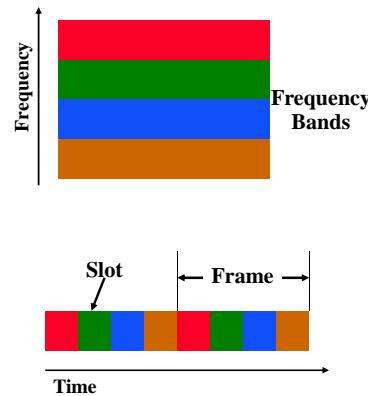
Peter A. Steenkiste

10


Multiplexing Techniques

- **Frequency-division multiplexing (FDM)**
 - » divide the capacity in the frequency domain
- **Time-division multiplexing (TDM)**
 - » Divide the capacity in the time domain
 - » Fixed or variable length time slices

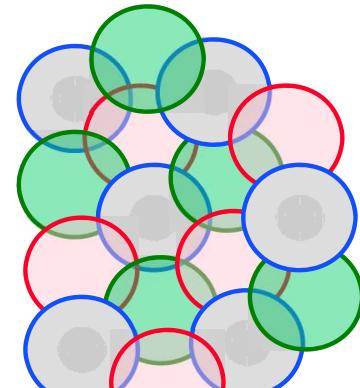
Peter A. Steenkiste


Multiple Users Can Share the Ether

12

Frequency versus Time-division Multiplexing

- With frequency-division multiplexing different users use different parts of the frequency spectrum.
 - I.e. each user can send all the time at reduced rate
 - Example: roommates
 - Hardware is slightly more expensive and is less efficient use of spectrum
- With time-division multiplexing different users send at different times.
 - I.e. each user can send at full speed some of the time
 - Example: a time-share condo
 - Drawback is that there is some transition time between slots; becomes more of an issue with longer propagation times
- The two solutions can be combined.



13

Peter A. Steenkiste

Frequency Reuse in Space

- Frequencies can be reused in space
 - Distance must be large enough
 - Example: radio stations
- Basis for “cellular” network architecture
- Set of “base stations” connected to the wired network support set of nearby clients
 - Star topology in each circle
 - Cell phones, 802.11, ...

14

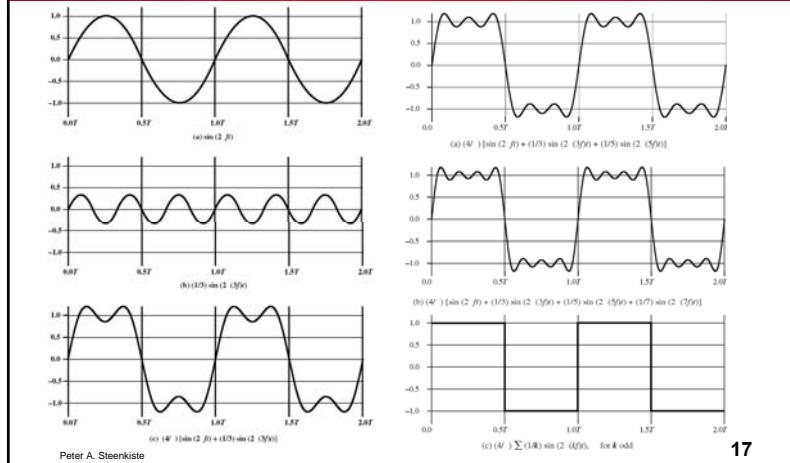
Peter A. Steenkiste

Outline

- RF introduction
- Modulation and multiplexing - review
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

15


Relationship between Data Rate and Bandwidth

- The greater the (spectral) bandwidth, the higher the information-carrying capacity of the signal
- Intuition: if a signal can change faster, it can be modulated in a more detailed way and can carry more data
 - E.g. more bits or higher fidelity music
- Extreme example: a signal that only changes once a second will not be able to carry a lot of bits or convey a very interesting TV channel
- Can we make this more precise?

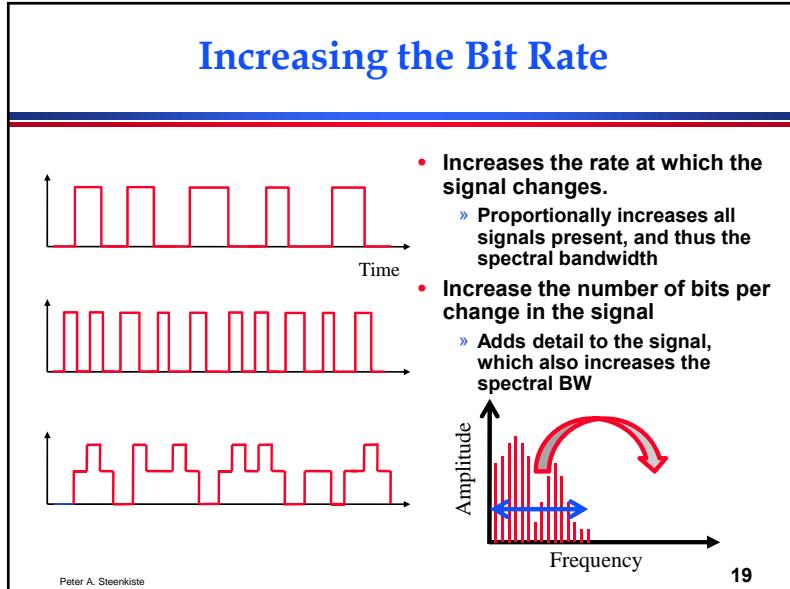
Peter A. Steenkiste

16

Adding Detail to the Signal

Peter A. Steenkiste

17

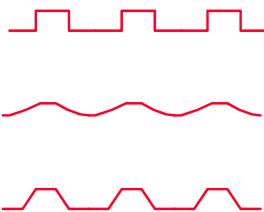

Some Intuition

- Smooth time domain signal has narrow frequency range
 - Sine wave \rightarrow pulse at exactly one frequency
- Adding detail widens frequency range
 - Need to add additional frequencies to represent details
 - Very sharp edges are especially bad (many frequencies)
- The opposite is also true
 - Pulse in time domain has very wide spectrum
 - Same is true for random noise ("noise floor")
- Implication: modulation has a big impact on how much (scarce) spectrum is used

Peter A. Steenkiste

18

Increasing the Bit Rate



Peter A. Steenkiste

19

So Why Don't we Always Send a Very High Bandwidth Signal?

- Channels have a limit on the type of signals they can carry effectively
- Wires only transmit signals in certain frequency ranges
 - Stronger attenuation and distortion outside of range
- Wireless radios are only allowed to use certain parts of the spectrum
 - The radios are optimized for that frequency band
- Distortion makes it hard for receiver to extract the information
 - A major challenge in wireless

Peter A. Steenkiste

20

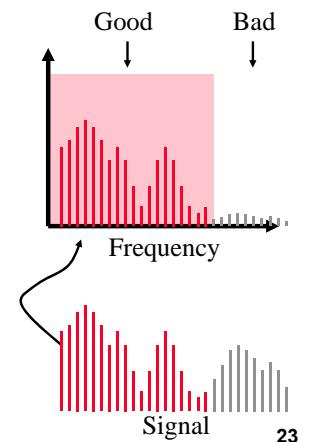
Propagation Degrades RF Signals

- Attenuation in free space: signal gets weaker as it travels over longer distances
 - » Radio signal spreads out – free space loss
 - » Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
 - » Reflection redirects part of the signal
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
 - » Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up
 - » Node moves $\frac{1}{2}$ wavelength -> big change in signal strength

Peter A. Steenkiste

21

Propagation Degrades RF Signals


- Attenuation in free space: signal gets weaker as it travels over longer distances
 - » Radio signal spreads out – free space loss
 - » Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
 - » Reflection redirects part of the signal
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
 - » Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up
 - » Node moves $\frac{1}{2}$ wavelength -> big change in signal strength

Peter A. Steenkiste

22

Transmission Channel Considerations

- Example: grey frequencies get attenuated significantly
- For wired networks, channel limits are an inherent property of the wires
 - Different types of fiber and copper have different properties
 - Capacity also depends on the radio and modulation used
 - Improves over time, even for same wire
- For wireless networks, limits are often imposed by policy
 - Can only use certain part of the spectrum
 - Radio uses filters to comply

Peter A. Steenkiste

23

Outline

- RF introduction
- Modulation and multiplexing - review
 - » Analog versus digital signals
 - » Forms of modulation
 - » Baseband versus carrier modulation
 - » Multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

24

Channel Capacity

- Data rate - rate at which data can be communicated (bps)
 - » Channel Capacity – the maximum rate at which data can be transmitted over a given channel, under given conditions
- Bandwidth - the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise - average level of noise over the communications path
- Error rate - rate at which errors occur
 - » Error = transmit 1 and receive 0; transmit 0 and receive 1

Peter A. Steenkiste

25

The Nyquist Limit

- A noiseless channel of bandwidth B can at most transmit a binary signal at a capacity $2B$
 - » E.g. a 3000 Hz channel can transmit data at a rate of at most 6000 bits/second
 - » Assumes binary amplitude encoding
- For M levels: $C = 2B \log_2 M$
 - » M discrete signal levels
- More aggressive encoding can increase the actual channel bandwidth
 - » Example: modems
- Factors such as noise can reduce the capacity

Peter A. Steenkiste

26

Decibels

- A ratio between signal powers is expressed in decibels
 - decibels (db) = $10 \log_{10}(P_1 / P_2)$
- Is used in many contexts:
 - » The loss of a wireless channel
 - » The gain of an amplifier
- Note that dB is a relative value.
- Can be made absolute by picking a reference point.
 - » Decibel-Watt – power relative to 1W
 - » Decibel-milliwatt – power relative to 1 milliwatt

Peter A. Steenkiste

27

Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that is present at a particular point in the transmission
 - » Typically measured at a receiver
- Signal-to-noise ratio (SNR, or S/N)
$$(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$
- A high SNR means a high-quality signal
- Low SNR means that it may be hard to “extract” the signal from the noise
- SNR sets upper bound on achievable data rate

Peter A. Steenkiste

28

Shannon Capacity Formula

- **Equation:** $C = B \log_2(1 + \text{SNR})$
- **Represents error free capacity**
 - » It is possible to design a suitable signal code that will achieve error free transmission (you design the code)
- **Result is based on many assumptions**
 - » Formula assumes white noise (thermal noise)
 - » Impulse noise is not accounted for
 - » Various types of distortion are also not accounted for
- **We can also use Shannon's theorem to calculate the noise that can be tolerated to achieve a certain rate through a channel**

Peter A. Steenkiste

29

Shannon Discussion

- **Bandwidth B and noise N are not independent**
 - » N is the noise in the signal band, so it increases with the bandwidth
- **Shannon does not provide the coding that will meet the limit, but the formula is still useful**
- **The performance gap between Shannon and a practical system can be roughly accounted for by a gap parameter**
 - » Still subject to same assumptions
 - » Gap depends on error rate, coding, modulation, etc.

$$C = B \log_2(1 + \text{SNR}/\Gamma)$$

Peter A. Steenkiste

30

Example of Nyquist and Shannon Formulations

- **Spectrum of a channel between 3 MHz and 4 MHz ; $\text{SNR}_{\text{dB}} = 24 \text{ dB}$**

$$B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$$

$$\text{SNR}_{\text{dB}} = 24 \text{ dB} = 10 \log_{10}(\text{SNR})$$

$$\text{SNR} = 251$$

- **Using Shannon's formula**

$$C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8 \text{ Mbps}$$

Peter A. Steenkiste

31

Example of Nyquist and Shannon Formulations

- **How many signaling levels are required?**

$$C = 2B \log_2 M$$

$$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$$

$$4 = \log_2 M$$

$$M = 16$$

- **Look out for: dB versus linear values, \log_2 versus \log_{10}**

Peter A. Steenkiste

32

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- **Antennas and signal propagation**
 - » How do antennas work
 - » Propagation properties of RF signals
 - » Modeling the channel
- Equalization and diversity
- Modulation and coding
- Spectrum access

Peter A. Steenkiste

33

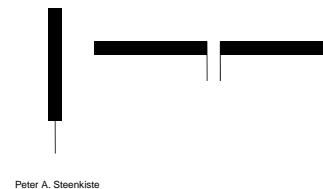
What is an Antenna?

- **Conductor that carries an electrical signal and radiates an RF signal.**
 - » The RF signal “is a copy of” the electrical signal in the conductor
- **Also the inverse process: RF signals are “captured” by the antenna and create an electrical signal in the conductor.**
 - » This signal can be interpreted (i.e. decoded)
- **Efficiency of the antenna depends on its size, relative to the wavelength of the signal.**
 - » E.g. quarter of a wavelength

Peter A. Steenkiste

34

Types of Antennas

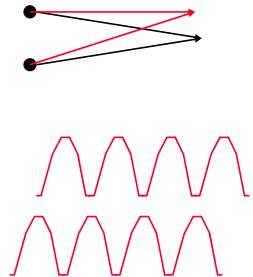

- **Abstract view: antenna is a point source that radiates with the same power level in all directions – omni-directional or isotropic.**
 - » Not common – shape of the conductor tends to create a specific radiation pattern
 - » Note that isotropic antennas are not very efficient!!
 - Unless you have a very large number of receivers
- **Common shape is a straight conductor.**
 - » Creates a “disk” pattern, e.g. dipole
- **Shaped antennas can be used to direct the energy in a certain direction.**
 - » Well-known case: a parabolic antenna
 - » Pringles boxes are cheaper

Peter A. Steenkiste

35

Antenna Types: Dipoles

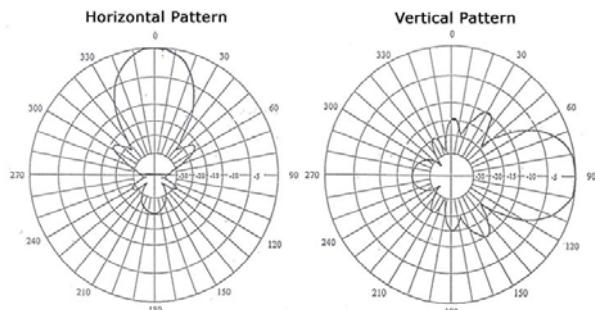
- **Simplest: half-wave dipole and quarter wave vertical antennas**
 - » Very simple and very common
 - » Elements are quarter wavelength of frequency that is transmitted most efficiently
 - » Donut shape
- **May other designs**



Peter A. Steenkiste

36

Multi-element Antennas


- Multi-element antennas have multiple, independently controlled conductors.
 - » Signal is the sum of the individual signals transmitted (or received) by each element
- Can electronically direct the RF signal by sending different versions of the signal to each element.
 - » For example, change the phase in two-element array.
- Covers a lot of different types of antennas.
 - » Number of elements, relative position of the elements, control over the signals, ...

37

Peter A. Steenkiste

Directional Antenna Properties

- **dBi: antenna gain in dB relative to an isotropic antenna with the same power.**
 - » Example: an 8 dBi Yagi antenna has a gain of a factor of 6.3 (8 dB = $10 \log 6.3$)

38

Peter A. Steenkiste

Examples 2.4 GHz

39

Peter A. Steenkiste

Summary

- **The maximum capacity of a channel depends on the SINR**
 - » How close you get to this maximum depends on the sophistication of the radios
 - » Distortion of the signal also plays a role – next lecture
- **Antennas are responsible for transmitting and receiving the EM signals**
 - » The “ideal” isotropic antenna is a point source that radiates energy in a sphere
 - » Practical antennas are directional in nature, as a result of the antenna shape or the use of multi-element antennas
 - » The antenna gain is expressed in dBi

40

Peter A. Steenkiste