

18-452/18-750
Wireless Networks and Applications
Lecture 18: PAN

Peter Steenkiste
CS and ECE, Carnegie Mellon University

Spring Semester 2018
<http://www.cs.cmu.edu/~prs/wirelessS18/>

Peter A. Steenkiste, CMU

1

IEEE 802.15: Personal Area Networks

- Target deployment environment: communication of personal devices working together
 - » Short-range
 - » Low Power
 - » Low Cost
 - » Small numbers of devices
- Four groups of standards:
 - » IEEE 802.15.1 – “Bluetooth”
 - » IEEE 802.15.2 – Interoperability (e.g. WiFi)
 - » IEEE 802.15.3 – High data rate WPAN (WiMedia)
 - » IEEE 802.15.4 – Low data rate WPAN (ZigBee)

Peter A. Steenkiste, CMU

3

Outline

- 802.15 protocol overview
- Bluetooth
- Personal Area Networks – 802.15
 - » Applications and positioning
 - » Bluetooth
 - » High speed WPAN
 - » Zigbee
 - » Other
- UWB

Peter A. Steenkiste, CMU

2

Some Common Themes

- Master/slave notion
 - » Or simple node versus coordinator
- Use of “piconets”
 - » Small groups of devices managed by a master or coordinator
 - » Scalability is not a concern
- Support for QoS
 - » Want to support voice and other media
- But many variants in how this functionality is supported

Peter A. Steenkiste, CMU

4

Bluetooth

- Think USB, not Ethernet
 - » Cable replacement technology
- Originally defined as IEEE 802.15.1, but standard is now maintained by the Bluetooth Special Interest Group
 - » Created by Ericsson
- Some features:
 - » Up to 1 Mbps connections (original version)
 - » 1600 hops per second FHSS
 - » Includes synchronous, asynchronous, voice connections
 - » Piconet routing
- Small, low-power, short-range, cheap, versatile radios
- Used as Internet connection, phone, or headset
- Master/slave configuration and scheduling

Peter A. Steenkiste, CMU

5

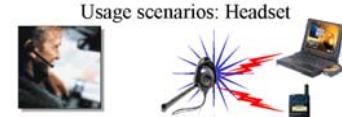
IEEE 802.15.1

- Adopted the Bluetooth MAC and PHY specifications
- IEEE 802.15.1 and Bluetooth are almost identical regarding physical layer, baseband, link manager, logical link control and adaptation protocol, and host control interface
- Range of up to 30 feet, uses FHSS
- Data transfer rates of up to 1 Mbps
 - » Up to 3 Mbps for version 2
- Not designed to carry heavy traffic loads

Peter A. Steenkiste, CMU

6

Bluetooth Standards


- Core specifications: defines the layers of the Bluetooth protocol architecture
 - » Radio - air interface, txpower, modulation, FH
 - » Baseband - power control, addressing, timing, connections..
 - » Link manager protocol (LMP) - link setup & mgmt, incl. authentication, encryption, ...
 - » Logical link control and adaptation protocol (L2CAP) - adapts upper layer to baseband
 - » Service discovery protocol (SDP) – device info, services and characteristics.

Peter A. Steenkiste, CMU

7

Bluetooth “Profiles”

- Profile specifications describe the use of BT in support of various applications
 - » Includes which parts of the core specification are mandatory, optional or not applicable
- Data and voice access points
 - » Real-time voice and data transmissions
- Cable replacement
 - » Eliminates need for numerous cable attachments for connection

Peter A. Steenkiste, CMU

8

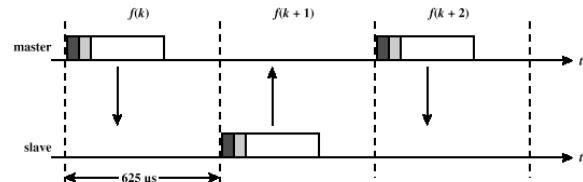
Some Example Profiles

- Audio/video profile
- Fax profile
- Basic printing profile
- Serial port profile
- PAN profile
- Phone book access profile
- Headset profile
- LAN access profile
- Service discovery profile
- Cordless phone profile

Peter A. Steenkiste, CMU

9

Frequency Hopping in Bluetooth

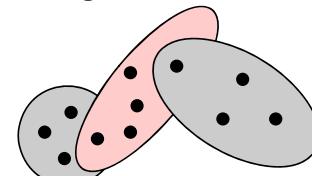

- Provides resistance to interference and multipath effects
- Provides a form of multiple access among co-located devices in different piconets
- Total bandwidth divided into 79 1MHz physical channels
- FH occurs by jumping from one channel to another in pseudorandom sequence
- Hopping sequence shared with all devices on piconet
 - » Remember that all communication is with the master, i.e., only one transmitter at any time

Peter A. Steenkiste, CMU

10

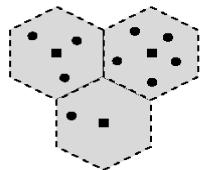
Sharing the Channel

- Bluetooth devices use time division duplex (TDD)
- Access technique is TDMA
- FH-TDD-TDMA

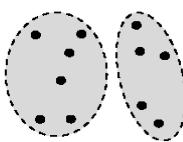

Peter A. Steenkiste, CMU

11

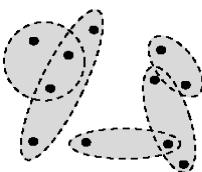
Piconets are Basis for Topology


- Master with up to 7 active slaves
 - » Slaves only communicate with master
 - » Slaves must wait for permission from master
- Master picks radio parameters
 - » Channel, hopping sequence, timing, ...
- Scatternets can be used to build larger networks
 - » A slave in one piconet can also be part of another piconet
 - » Either as a master or as a slave
 - » If master, it can link the piconets

Peter A. Steenkiste, CMU



12


Wireless Network Configurations

(a) Cellular system (squares represent stationary base stations)

(b) Conventional ad hoc systems

(c) Scatternets

13

Peter A. Steenkiste, CMU

Bluetooth Piconet

- A collection of devices connected via Bluetooth technology in a master-slave network
 - » Master functions as the piconet coordination (PNC)
- The piconet starts with two connected devices, and may grow to eight connected devices
 - » Devices are added by the master
- All Bluetooth devices are peer units and have identical implementations, but they play a master or slave role when connecting
 - » Roles can be reversed
 - » Example: headsets connects as master to phone but then becomes slave

Peter A. Steenkiste, CMU

14

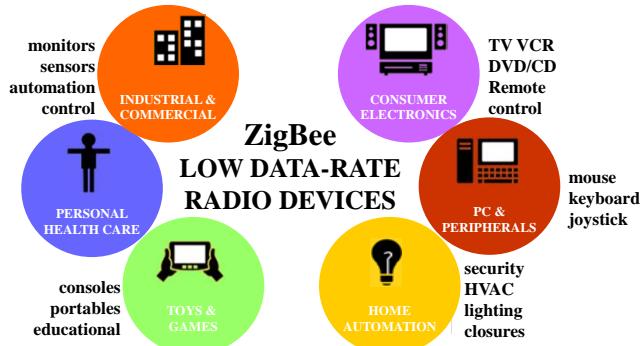
Forming a piconet

- Needs two parameters:
 - » Hopping pattern of the radio it wishes to connect.
 - » Phase within the pattern i.e. the clock offset of the hops.
 - » Effectively defines a channel that must be unique to the piconet – master must scan for other piconets first
- The global ID defines the hopping pattern.
- The master shares its global ID and its clock offset with the other radios which become slaves.
- The global ID and the clock parameters are exchanged using a FHS (Frequency Hopping Synchronization) packet.

15

Peter A. Steenkiste, CMU

IEEE 802.15.4 - Overview

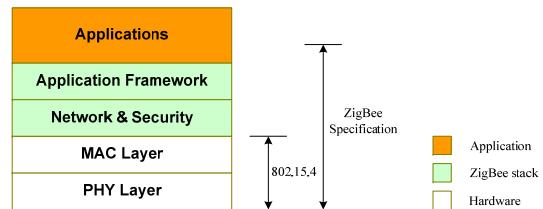

- Low Rate WPAN (LR-WPAN)
- Simple and low cost
- Low power consumption
 - » Years on lifetime using standard batteries
- Mostly in sensor networks
- Data rates: 20-250 kbps
- Operates at multiple frequencies
 - » 868 MHz, 915 MHz, 2.4 GHz
- Blends elements from 802.15.3 and 802.11
- Many versions exist for different application domains

Peter A. Steenkiste, CMU

16

802.15.4 applications

<http://www.csie.nctu.edu.tw/~yctseng/WirelessNet06-02/zigbee-802-15-4.ppt>


ZigBee LOW DATA-RATE RADIO DEVICES

Peter A. Steenkiste, CMU

17

Zigbee/802.15.4 architecture

- ZigBee Alliance**
 - 45+ companies: semiconductor mfrs, IP providers, OEMs, etc.
 - Defining upper layers of protocol stack: from network to application, including application profiles
 - First profiles published mid 2003
- IEEE 802.15.4 Working Group**
 - Defining lower layers of protocol stack: MAC and PHY
 - PHY based on DSSS – runs at 250 Kbps in 2.4 GHz band
 - Links are encrypted

18

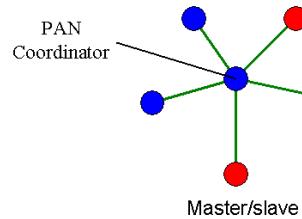
802.15.4 devices

- Full function device (FFD)**
 - Any topology
 - Network coordinator capable
 - Talks to any other device
- Reduced function device (RFD)**
 - Limited to star topology
 - Cannot become a network coordinator
 - Talks only to a network coordinator
 - Very simple implementation

Peter A. Steenkiste, CMU

19

Roles


- Devices (RFD or FFD)**
 - must be associated to a coordinator
- Coordinators (FFD)**
 - can operate in peer-to-peer mode
 - can form a PAN coordinated by a PAN coordinator
- PAN Coordinator (FFD)**
- Coordinator**
 - manages a list of associate devices
 - devices need to associate and disassociate
 - allocates short addresses
 - beacon frames (in beacon mode)
 - processes requests for fixed time slots

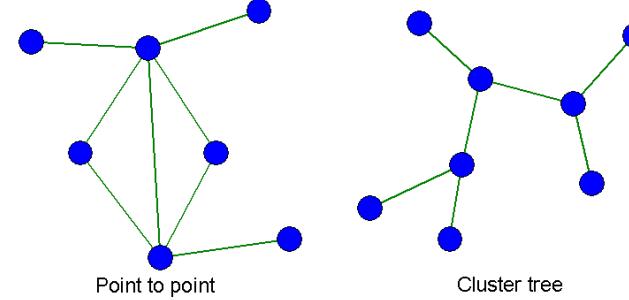
Peter A. Steenkiste, CMU

20

IEEE 802.15.4 - Star

Star Topology

● Full function device
● Reduced function device


— Communications flow

Peter A. Steenkiste, CMU

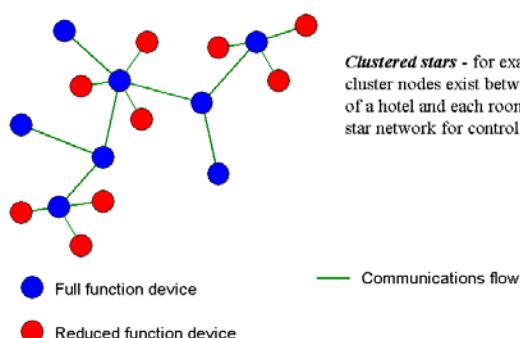
21

IEEE 802.15.4 - Peer-to-Peer

Peer-to-Peer Topology

● Full function device

— Communications flow


Peter A. Steenkiste, CMU

22

IEEE 802.15.4 - Combined

Combined Topology

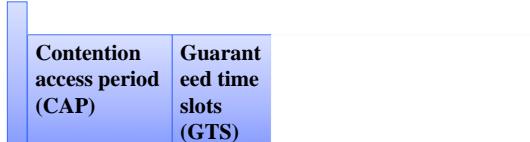
Clustered stars - for example, cluster nodes exist between rooms of a hotel and each room has a star network for control.

— Communications flow

Peter A. Steenkiste, CMU

23

IEEE 802.15.4 - MAC


- One PAN coordinator & multiple RFDs/FFDs
 - » Association/disassociation
- CSMA-CA channel access
 - » Reliable delivery of data
- Optional superframe structure with beacons
 - » GTS mechanism
- AES-128 security
- QoS – 3 traffic types
 - » Periodic data: e.g. Sensor data
 - » Intermittent data: generated once a while, e.g. light switch traffic
 - » Repetitive low latency data: E.g. Mouse device traffic

Peter A. Steenkiste, CMU

24

802.15.4 superframe structure

Beacon

Active period

Inactive period

Peter A. Steenkiste, CMU

25

Outline

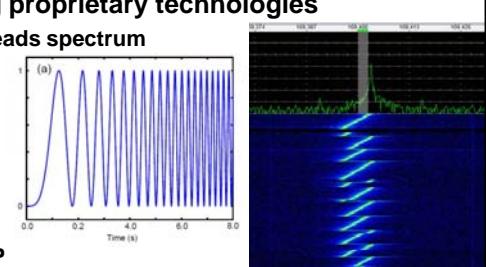
- 802.15 protocol overview
- Bluetooth
- Personal Area Networks – 802.15
 - » Applications and positioning
 - » Bluetooth
 - » Zigbee
 - » Other
- UWB

Peter A. Steenkiste, CMU

26

Low Power Technologies

- Battery life times of years or even decades
 - » Ubiquitous deployment of sensors
 - » Internet of Things (IoT), automation, ...
 - » Replacing batteries is labor intensive
- Bluetooth Low Energy
 - » Not backwards compatible; deployed in some phones
 - » Profiles for healthcare, proximity sensing, alerts, keyboard/mice/..., ..
 - » 2.4 GHz but simpler modulation schemes


Peter A. Steenkiste, CMU

27

Low-Power Wide-Area Networks (LPWAN)

- Longer range to simplify deployment
 - » “Metropolitan” area – city-wide sensor network
 - » Single base station covers large area and many sensors
- Many competing proprietary technologies
 - » LoRa: chirp spread spectrum
 - » Sigfox
 - » Star topology, 900 MHz, ..
 - LTE-MTC
 - » Machine Type Communication
 - » Defined by 3GPP

Peter A. Steenkiste, CMU <https://www.link-labs.com/blog/what-is-lora>

28

Outline

- 802.15 protocol overview
- Bluetooth
- Personal Area Networks – 802.15
 - » Applications and positioning
 - » Bluetooth
 - » Zigbee
 - » Other
- UWB

Peter A. Steenkiste, CMU

29

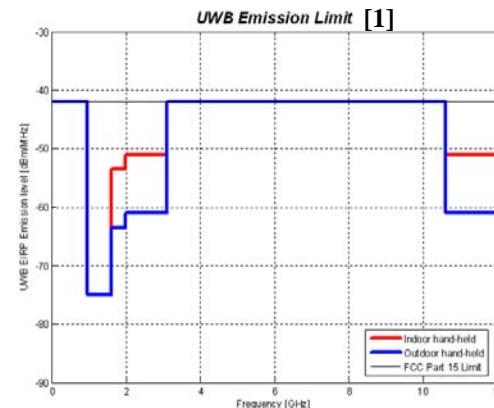
Ultra WideBand

$$C = B \log_2(1 + \text{SNR})$$

- Can achieve high throughputs with low SNR by using a high B
- Motivation is the 802.15.3a (high rate PAN) standards effort
 - » Targets high speed, short distance communication
- But where do I find this much spectrum?
- Use a transmit power that is low enough to so it will not affect other users
 - » Can be used in most licensed frequency bands (with FCC permission, of course)

Peter A. Steenkiste, CMU

30


FCC UWB Rules

- UWB technically defined as:
 - » Width of signal > 500 MHz, or $B_f = 2 \frac{f_H - f_L}{f_H + f_L} > 0.2$
- Approved for 3.1 GHz to 10.6 GHz
- Power limit is -41.3 dBm/MHz
 - » Note that the limit is not on the total signal but across the part of the spectrum that is used
- Results in a frequency mask that must be satisfied
- Certain narrow bands must be filtered out
 - » E.g. certain radio astronomy bands
 - » Depends on the country

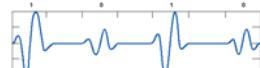
Peter A. Steenkiste, CMU

31

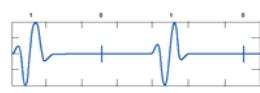
FCC Regulations

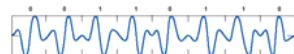
Peter A. Steenkiste, CMU

32


Example Technology: Basic Impulse Information Modulation

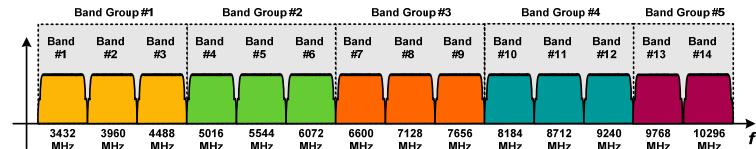
Pulse length ~ 200ps; Energy concentrated in 2-6GHz band;
Voltage swing ~100mV; Power ~ 10uW


- Pulse Position Modulation (PPM)


- Pulse Amplitude Modulation (PAM)

- On-Off Keying (OOK)

- Bi-Phase Modulation (BPSK)



Peter A. Steenkiste, CMU

33

Multi-band OFDM

- Divide the spectrum into bands of 528 MHz.

- » Transmitter and receiver process smaller bandwidth signals.
- » Can spread symbols across multiple bands (FH)
- » Can avoid bands based on local regulations

- Use of OFDM offer additional advantages

- » Proven technology that is known to be efficient
- » Can selectively disable subcarriers to protect narrow band signals
- » For example: 128 tones of 5.125 MHz

Peter A. Steenkiste, CMU

34

Discussion

- UWB was included in 802.15 standards
- 802.15.3a was going to use UWB but never materialized
 - » Fight between two competing proposals
 - » Example on previous slide is one of them
- Also added as 802.15.4a to the low power PAN group
 - » Provides for 3 “narrower” bands
 - » Not clear it is used

Peter A. Steenkiste, CMU

35