

18-452/18-750
Wireless Networks and Applications
Lecture 11:
Mesh and Ad Hoc Networks

Peter Steenkiste

Spring Semester 2018

<http://www.cs.cmu.edu/~prs/wirelessS18/>

Peter A. Steenkiste

1

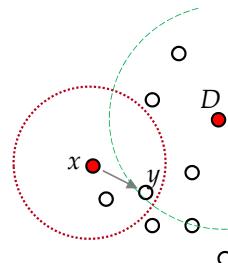
Greedy Perimeter Stateless Routing (GPSR)

- Use *positions* of neighboring nodes and packet destination to forward packets
 - No connectivity or global topology is assumed
 - no forwarding or path information anywhere!
 - Nodes are assumed to know their location
 - Need a mechanism for address-to-location look up
- Two forwarding techniques is used
 - *Greedy forwarding*, if possible
 - *Perimeter forwarding*, otherwise

Peter A. Steenkiste

3

Overview

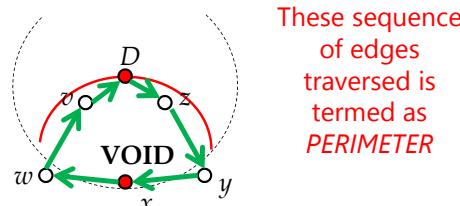

- Ad hoc networking concept
- Proactive versus reactive routing
- Proactive, table based routing: DSDV
- Reactive routing DSR
- Geographic routing: GPSR
- Wireless link metrics
- Ad hoc networking examples

Peter A. Steenkiste

2

GPSR - Greedy forwarding

- A sender/forwarder x chooses to forward to a neighbor y such that $\{d_{xy} + d_{yD}\}$ is minimum



Peter A. Steenkiste

4

GPSR - Perimeter forwarding

- What happens if a node does not have a neighbor that is closer to the destination
- Right Hand Rule: you forward the packet to your first neighbor clockwise around yourself
 - Traverse an interior region in *clockwise* edge order
 - Guaranteed to reach a (reachable) destination for planar graph

Peter A. Steenkiste

5

Many Other Variants

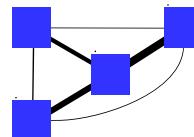
- Hybrid approaches mix different solutions
 - » Use proactive routing for nearby nodes for reactive routing for far nodes
 - » Combine source routing with distance vector (AODV)
- Hierarchical: create a hierarchy of clusters
 - » Improve scalability by reducing routing overhead
 - » Can use different protocols for intra and inter cluster
- Many proposals for optimizations
 - » Links use different frequencies, multiple radios, etc.
 - » Link metrics that consider interference level, ...
- Best solutions is highly context dependent: density, traffic load, degree of mobility, ...

Peter A. Steenkiste

6

Overview

- Ad hoc networking concept
- Proactive versus reactive routing
- Proactive, table based routing: DSDV
- Reactive routing DSR
- Geographic routing: GPSR
- Wireless link metrics
- Ad hoc networking examples


Peter A. Steenkiste

7

Link Metric

- Routing protocols for wired networks tend to use very simple link metrics
 - » Hop count (all links have cost of 1) or simple integers
 - » Performance of wired links is predictable!
- Wireless links can be very different and their performance can change unpredictably
 - » Hop count is a bad idea – why?
- Some links are so bad they are not really links
- Solution: Require a minimum PDR to qualify as a link
 - » PDR = Packet Delivery Rate
- Is that a sufficient solution?

Peter A. Steenkiste

8

Factors Influencing "Link Quality"

- Signal strength and quality: affects the bit rate used for packets
 - » Bit rate affects the transmit time of packets
- Number of retransmissions needed to deliver packets
 - » Retransmissions delay packets and use up more bandwidth
- Interference from nearby nodes
 - » Interference limits the transmission opportunities a node has, i.e., it can take longer to get channel access
 - » Some links may also face more hidden and exposed terminal problems

Peter A. Steenkiste

9

ETX: Minimize Number of Transmissions

- Measure each link's packet delivery probability with broadcast probes
 - » Must also measure the reverse link – ACKs must be received too for a transmission to be successful!

$$P(\text{delivery}) = 1 / (d_f * d_r)$$

- The link ETX is the average number of transmissions needed to deliver a packet
 - » $\text{Link ETX} = 1 / P(\text{delivery}) = d_f * d_r$
- Route ETX = sum of link ETX
 - » Pessimistic: not all links interfere with each other
- ETX only considers some factors: bit rate, short probes under-estimate loss rate, traffic load, hidden terminals, ...

Peter A. Steenkiste

10

ETX: Sanity Checks

- ETX of perfect 1-hop path: 1
- ETX of 50% delivery 1-hop path: 2
- ETX of perfect 3-hop path: 3
- So, e.g., a 50% loss path is better than a perfect 3-hop path!
 - » A PDR threshold would probably fail here ...
- But this ignores many real world factors!
 - » Examples?

Peter A. Steenkiste

11

ETT: Expected Transmission Time

- The bit rate used for transmission can have a very big impact on performance
 - » E.g., 802.11a rates range from 6 to 54 Mbps
 - » Bit range even much larger for more recent standards (but ad hoc only standardized up to)
- ETT – expected *transmission time*
$$\text{ETT} = \text{ETX} / \text{Link rate}$$
$$= 1 / (P(\text{delivery}) * \text{Bit Rate})$$
- Accounts for all major factors
 - » Traffic load and competition for transmission time by nearby links is still not accounted for
 - » Must update metric periodically

Peter A. Steenkiste

12

Overview

- Ad hoc networking concept
- Proactive versus reactive routing
- Proactive, table based routing: DSDV
- Reactive routing DSR
- Geographic routing: GSR
- Wireless link metrics
- Ad hoc networking examples

Peter A. Steenkiste

13

Examples of Ad Hoc Networks

- Mesh networks, for example for last mile access to the home
 - » Reduces infrastructure cost significantly (no wires!)
 - » Routers are stationary, powered – simplifies routing
 - » Capacity is limited by may be ok in, e.g., rural areas
 - » 802.11s is a standard for WiFi mesh networking
- Vehicular networks: cars talk directly to each other, e.g., for safety applications
 - » No need for infrastructure, but security is a challenge
 - » Routing is very challenges (survey topic)
- Sensor networks (lecture, survey topic)
 - » Emphasis on low power and low traffic volume
 - » Ad hoc is an attractive solution for dense deployments

Peter A. Steenkiste

14

Summary

- Ad hoc networks face many challenges
 - » Bad links, interference, mobility, ...
 - » Makes routing very challenging
 - » Limited support: hardware and driver limitations
- Many proposals!
 - » Proactive routing: variants of “wired” routing protocols
 - » Reactive routing: only establish a path when it is needed
 - » Geographic routing: use destination location info only
 - » Many variants and extensions
- Specific challenges depend on the application domains
 - » Mesh versus vehicular
 - » Active area of research

Peter A. Steenkiste

15

Outline

- Brief history
- 802 protocol overview
- Wireless LANs – 802.11 – overview
- 802.11 MAC, frame format, operations
- 802.11 management
- 802.11 security
- 802.11 power control
- 802.11*
- 802.11 QoS

Peter A. Steenkiste

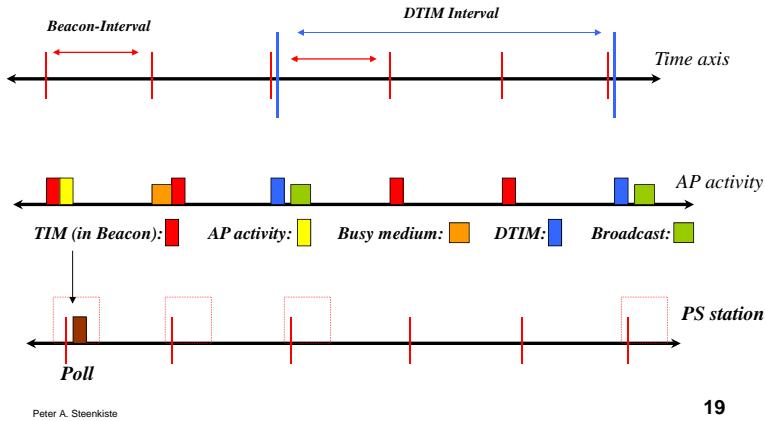
16

Power Management

- Goal is to enhance battery life of the stations
- Idle receive state dominates LAN adapter power consumption over time
- Allow stations to power off their NIC while still maintaining an active session
- Different protocols are used for infrastructure and independent BSS
 - » Our focus is on infrastructure mode

Peter A. Steenkiste

17


Power Management Approach

- Idle station to go to sleep
- AP keeps track of stations in Power Savings mode and buffers their packets
 - » Traffic Indication Map (TIM) is included in beacons to inform which power-save stations have packets waiting at the AP
- Power Saving stations wake up periodically and listen for beacons
 - » If they have data waiting, they can send a PS-Poll to request that the AP sends their packets
- TSF assures AP and stations are synchronized
 - » Synchronizes clocks of the nodes in the BSS
- Broadcast/multicast frames are also buffered at AP
 - » Sent after beacons that includes Delivery Traffic Indication Map (DTIM)
 - » AP controls DTIM interval

Peter A. Steenkiste

18

Infrastructure Power Management Operation

Peter A. Steenkiste

19

Some IEEE 802.11 Standards

- » IEEE 802.11a
 - PHY Standard : 8 channels : up to 54 Mbps : some deployment
- » IEEE 802.11b
 - PHY Standard : 3 channels : up to 11 Mbps : widely deployed.
- » IEEE 802.11d
 - MAC Standard : support for multiple regulatory domains (countries)
- » IEEE 802.11e
 - MAC Standard : QoS support : supported by many vendors
- » IEEE 802.11f
 - Inter-Access Point Protocol : deployed
- » IEEE 802.11g
 - PHY Standard: 3 channels : OFDM and PBCC : widely deployed (as b/g)
- » IEEE 802.11h
 - Suppl. MAC Standard: spectrum managed 802.11a (TPC, DFS): standard
- » IEEE 802.11i
 - Suppl. MAC Standard: Alternative WEP : standard
- » IEEE 802.11n
 - MAC Standard: MIMO : standardization expected late 2008

Peter A. Steenkiste

20

IEEE 802.11 Family


Protocol	Release Data	Freq.	Rate (typical)	Rate (max)	Range (indoor)
Legacy	1997	2.4 GHz	1 Mbps	2Mbps	?
802.11a	1999	5 GHz	25 Mbps	54 Mbps	~30 m
802.11b	1999	2.4 GHz	6.5 Mbps	11 Mbps	~30 m
802.11g	2003	2.4 GHz	25 Mbps	54 Mbps	~30 m
802.11n	2008	2.4/5 GHz	200 Mbps	600 Mbps	~50 m

Peter A. Steenkiste

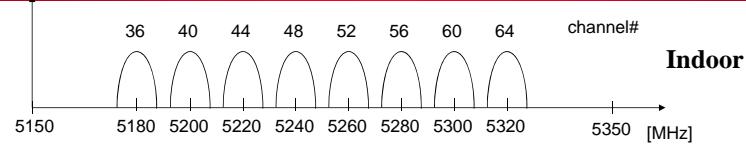
21

802.11b Channels

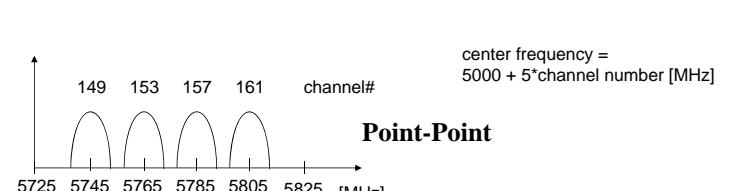
- In the UK and most of EU: 13 channels, 5MHz apart, 2.412 – 2.472 GHz
- In the US: only 11 channels
- Each channel is 22MHz
- Significant overlap
- Non-overlapping channels are 1, 6 and 11

Peter A. Steenkiste

22


802.11b Physical Layer

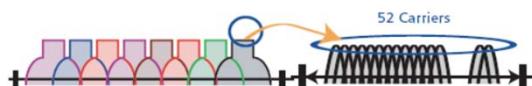
- FHSS (legacy)
 - » 2 & 4 GFSK
 - » Using one of 78 hop sequences, hop to a new 1MHz channel (out of the total of 79 channels) at least every 400milliseconds
- DSSS (802.11b)
 - » DBPSK & DQPSK
 - » Uses one of 11 overlapping channels (22 MHz)
 - » 1 and 2 Mbps: multiply the data by an 11-chip spreading code (Barker sequence)
 - » 5.5 and 11 Mbps: uses Complementary Code Keying (CCK) to generate spreading sequences that support the higher data rates
 - Spreading code is calculated based on the data bits


Peter A. Steenkiste

23

802.11a Physical Channels

center frequency =
5000 + 5*channel number [MHz]


Point-Point

24

802.11a Modulation

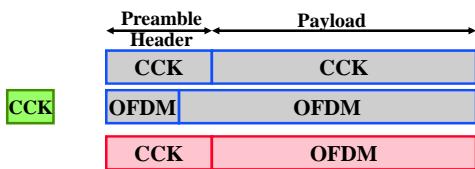
- Use OFDM to divide each physical channel (20 MHz) into 52 subcarriers (20M/64=312.5 KHz each)
 - » 48 data, 4 pilot

- Adaptive modulation
 - » BPSK: 6, 9 Mbps
 - » QPSK: 12, 18 Mbps
 - » 16-QAM: 24, 36 Mbps
 - » 64-QAM: 48, 54 Mbps

Peter A. Steenkiste

25

802.11a Discussion


- Uses OFDM in the 5 GHz band
 - » Also used by 802.11g in 2.4 GHz (next slides)
- What are the benefits of 802.11a compared with 802.11b/g?
 - » Greater bandwidth (up to 54Mb)
 - 54, 48, 36, 24, 18, 12, 9 and 6 Mbs
 - 802.11g (next slide) offers same benefit
 - » Less potential interference (5GHz)
 - » More non-overlapping channels
- But it does not provide interoperability with 802.11b, as 802.11g does
 - » Cannot fall back to lower rates (not an issue in practice)
 - » Cards typically support a and g

Peter A. Steenkiste

26

Going Faster: 802.11g

- 802.11g is the same as 802.11a, but in 2.4GHz band
 - » Falls back to 802.11b for the lower rates (1, 2, 5.5, 11 MHz)
 - » Uses 802.11a OFDM technology for new rates (6 Mbs and up)
- Creates an interoperability problem since 802.11b cards cannot interpret OFDM signals
 - » Interoperability mode: protection mechanism in hybrid environment: Send CCK CTS before OFDM packets or use(optional) hybrid packet
 - » Can also run an 802.11n only network – reduces overhead

Peter A. Steenkiste

27

Spectrum and Transmit Power Management Extensions (802.11h)

- Support 802.11 operation in 5 GHz band in Europe: coexistence with primary users
 - » Radar: cannot use bands if a radar is nearby
 - Allows opening up 11 more bands in 5 GHz band
 - » Satellite: limit power to 3dB below regulatory limit
- Dynamic Frequency Selection (DFS)
 - » Detect primary users and adapt
 - » AP notifies stations to switch channel at some point in time
- Transmit Power Control (TPC)
 - » Goal is to limit interference – also controlled by AP
- DFS and TPC have broader uses such as range and interference control, reduced energy consumption, automatic frequency planning, load balancing, ..

Peter A. Steenkiste

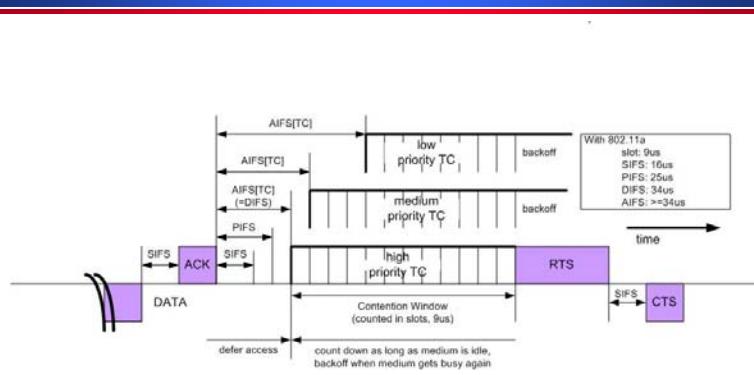
28

IEEE 802.11e

- Original intent was that 802.11 PCF could be used to provide QoS guarantees
 - Scheduler in the PCF priorities urgent traffic
 - But: overhead, "guarantees" are very soft
- 802.11e Enhanced Distributed Coordination Function (EDCF) is supposed to fix this.
 - Provides Hybrid Coordination Function (HCF) that combines aspects of PCF and DCF
- EDCF supports 4 Access Categories
 - AC_BK (or AC0) for Back-ground traffic
 - AC_BE (or AC1) for Best-Effort traffic
 - AC_VI (or AC2) for Video traffic
 - AC_VO (or AC3) for Voice traffic

29

Peter A. Steenkiste

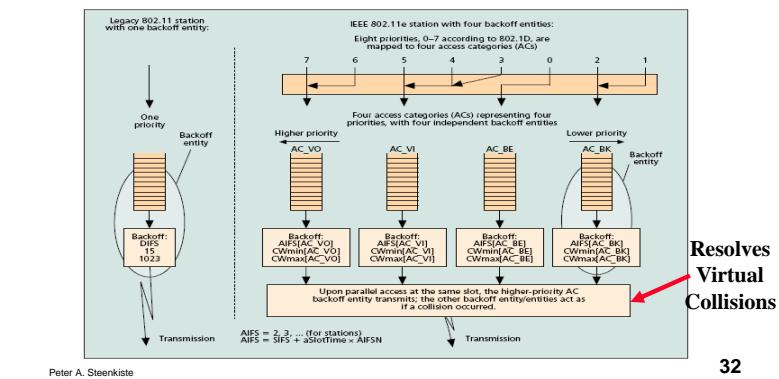

Service Differentiation Mechanisms in EDCF

- The two types of service differentiation mechanisms proposed in EDCF are:
- Arbitrate Inter-frame Space (AIFS) Differentiation**
 - Different AIFSs instead of the constant distributed IFS (DIFS) used in DCF.
 - Back-off counter is selected from $[1, CW[AC]+1]$ instead of $[0, CW]$ as in DCF.
- Contention Window (CWmin) Differentiation**
 - Different values for the minimum/maximum CWs to be used for the back-off time extraction.

30

Peter A. Steenkiste

IEEE 802.11e: Priorities



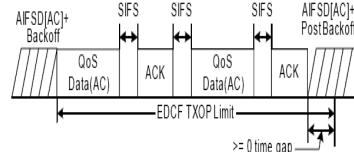
31

Peter A. Steenkiste

Mapping different priority frames to different AC

- Each frame arriving at the MAC with a priority is mapped into an AC as shown in figure below.

32


Other 802.11 MAC Improvements

- **TXOP- Transmission opportunity (TXOP) is an interval of time during which a back-off entity has the right to deliver multiple MSDUs.**

- » A TXOP is defined by its starting time and duration
- » Announced using a traffic specification (length, period)
- » Can give more transmission opportunities to a station
- » Can also limit transmission time (e.g. for low rate stations)

- **CFB- In a single TXOP, multiple MSDUs can be transmitted.**

- » “Contention Free Burst” (CFB)
- » Can use a block acknowledgement

33

Peter A. Steenkiste

802.11p: Vehicular Networking

- **Basis for Dedicated Short Range Communication (DSRC)**

- » Connecting vehicles and road side units
- » Dedicated band at 5.9 GHz
- » Higher layers of protocol stack defined by WAVE
- » Primary driver is vehicular safety such as reporting accidents, ..

- **Differences with 802.11a**

- » Channels are 10 MHz wide; this means that symbol times are twice as long (more robust to ISI)
- » Communication is between stations that are not associated or authenticated (no BSS ID)

34

Peter A. Steenkiste

Really Old Slides

48

Peter A. Steenkiste