18-452/18-750 Wireless Networks and Applications Lecture 1: Course Organization and Overview

Peter Steenkiste
Carnegie Mellon University

Spring 2018 http://www.cs.cmu.edu/~prs/wirelessS18/

eter A. Steenkiste. CMU

Goals of the Course

- Learn about the unique challenges in wireless networking
 - » Starting point is "regular" wired networks
 - » But the physical layer is very different!
- Gain an understanding of wireless technologies at the physical, MAC, and higher layers
 - » Physical layer essentials for computer systems types
 - » Focus of course is on the wireless protocol layer
 - » Implications for the higher layers of the protocol stack
- Get some hands-on experience in working with wireless networks and devices
 - » Measurements of a wireless network
 - » Implementing wireless protocols, algorithms

Peter A. Steenkiste. CMU

Outline

- Goals and structure of the course
- Administrative stuff
- A bit of history
- Wireless technologies
- Building a network
- Please ask questions!

Peter A. Steenkiste, CMU

2

Lectures

- Introduction
 - » Why are wireless networks so interesting?
 - » A very quick overview of networking
- Physical layer concepts (~5)
 - » Narrow focus: understanding the impact on higher layers
 - » Not an in-depth course on the communications field!
- LANs and WiFi (~6)
- Cellular networks (~3)
- Other technologies; PAN, RFID, NFC, (~5)
- GPS, localization, sensing (~3)
- Deployments: sensor networks, ad hoc, ...

Peter A. Steenkiste. CMU

4

Projects

Projects are hands-on, team-based

- Measurement project to improve your understanding of wireless link properties
 - » Measure signal strength and other signal properties
 - » How do they relate to the physical context?
- Design, implement and evaluate some wireless protocol, algorithm or system
 - » Needs to deal with the unpredictable nature of wireless links and with mobility
 - » Multi-phase projects: start small and work your way up to larger networks
 - » Define your own project or set project

Peter A. Steenkiste. CMU

5

Survey Presentations

- Present a survey of a particular wireless topic to the class
- Done in small teams or solo
- Survey is based on research papers
 - » Pick from a list of topics or define your own topic
 - » Initial set of papers provided for the list
- Goals are:
 - » Learn about a specific topic in depth
 - » Develop critical thinking skills
 - » Improve your presentation skills

Peter A. Steenkiste. CMU

6

Graduate versus Undergraduate Course Numbers

The course content is the same, but they are separate courses:

- Some different questions on the tests
- Different levels of expectation for projects and surveys
 - » E.g., original versus set project
- Final grades are assigned as separate pools
- The expectation is that students sign up for the course number that matches their status
 - » Talk to the instructor if you want to sign up for the "wrong" course number, e.g., ECE IMB students
- 18-452 is a Software Systems area course

Peter A. Steenkiste. CMU

7

Prerequisites

- The course assumes you have taken an "Introduction to Computer Systems" course
 - » For example based on the O'Hallaron and Bryant book
- We will also build on basic networking and signals concepts but the course includes introductory material on these topics
- Programming experience needed for project
 - » Often: C/C++ or other language, depending on project
- Course should be accessible to students with a broad range of backgrounds, but ...
- I don't know you, so please ask questions when something is not clear!

Peter A. Steenkiste. CMU

More Specifically ...

- For undergraduates 18-452
 - » 18-213 or 15-213: Introduction to Computer Systems
- For graduates 18-750
 - » 15-513/18-600 or ...
 - » Equivalent: a basic understanding of how computer systems work both inside the box (CMU, memory, IO, ..) and across boxes (familiarity with communication)
 - » If you have a degree in computer science or computer engineering, you should generally be ok
 - » Talk to me if you have concerns

Peter A. Steenkiste. CMU

9

Grading

Grade distribution:

Homeworks: 10%

Project 1: 5%Project 2: 25%

Survey: 10%Midterm: 20%

• Final: 30%

Peter A. Steenkiste, CMU

Administrative Stuff

- Textbook" "Wireless Communication Networks and Systems", Corry Beard and William Stallings, Pearson, 2015
 - » Best fit for the course
- The course is not based on the book
 - » The book should be used to read about the topics covered in class, e.g., to clarify points or get more depth
 - » Book does not cover all material, but slides are detailed
- Web page is primary source for information
 - » Lecture material
 - » Office hours, contact information, ...
 - » Dates for quizzes, exams and project deadlines
- We will use Canvas for assignments

Peter A. Steenkiste. CMU

11

More Administrative Stuff

- Lectures are Mo/We 2:30-4:20
 - » But lectures will typically be 80 minutes
 - » May go longer, e.g., to make up time for travel
- Recitations are Fr 10:30-11:50
 - » Recitations will be used for the project
 - » There will relatively few recitations, but
 - » May use recitation slot for make up lectures
- Course admin is Ms. Malloy Gates 9006
 - » Pick up assignments, make appointment, ...
- Teaching assistant: Matthew McCormack

Peter A. Steenkiste. CMU

12

Collaboration

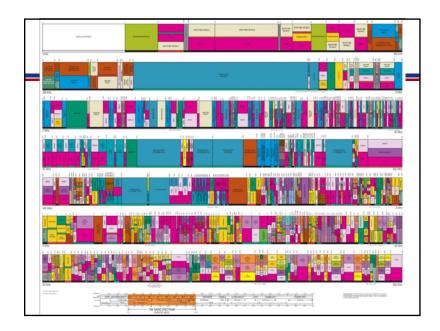
- Traditional rules of collaboration apply
 - » https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
- You must complete individual assignments and tests by yourself
- You are expected to collaborate with your partner in the team-based projects
- It is acceptable and encouraged to help fellow students with generic problems
 - » E.g. where to find documentation, use of tools, ..
- You must give proper credit when reusing material
 - » But check with the instructors first

Peter A. Steenkiste. CMU

13

Course Material

- Most slides were prepared by the course instructor
- Some slides contain material from other sources
 - » Previous co-instructors have contributed slides
 - » Some figures are taken from the textbook
 - » Some lectures contain material from other sources


Peter A. Steenkiste. CMU

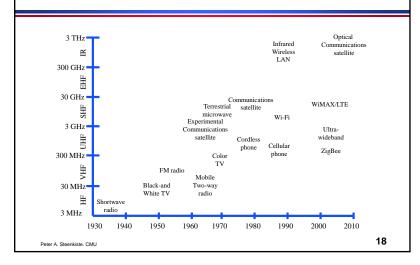
14

Outline

- Goals and structure of the course
- Administrative stuff
- A bit of history
- · Wireless technologies
- · Building a network

Peter A. Steenkiste, CMU

Spectrum Shared by Many Users

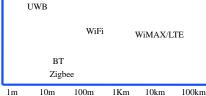

- Spectrum allocated by FCC and NTIA
- Two types of spectrum bands:
 - 1. Licensed spectrum: exclusive access to an organization
 - Federal agencies, broadcast TV, first responders, ...
 - Commercial, e.g., cellular operators
 - Unlicensed spectrum: everyone can use it with appropriate equipment, e.g., WiFi, zigbee, ...
- Other trends:
 - » Technology improvements have allowed us to use higher frequency bands over time
 - » Many bands have low utilization
 - » Older bands often use very inefficient technologies

Peter A. Steenkiste, CMU

17

19

Why so many Technologies?


IrDA

100

10

- Diverse application requirements
 - » Energy consumption
 - » Range
 - » Bandwidth
 - » Mobility
 - » Cost
- Diverse deployments
 - Licensed versus unlicensed
 Provisioned or
 - not

- Technologies have different
 - » Signal penetration
 - » Frequency use
 - » Cost
 - » Market size
 - » Age, integration

Range

Peter A. Steenkiste. CMU

Peter A. Steenkiste, CMU

Application Trends in Wireless

- Early days: specialized applications
 - » Broadcast TV and radio, voice calls, data, ..
 - » Holds for wireless and wired
- Today: flexible wireless platforms
 - » Phones, tables, and laptops all run similar applications
 - » Same trend as for wired networks: the internet took over
- Wireless is expanding in new domains
 - » Sensor networks, body area networks, ...
 - » Edge of the internet is increasingly wireless
 - » Many of these applications are unique to wireless
- Future?

Scope of Wireless Covered in the Course

- Significant depth on two technologies:
 - » Wireless in unlicensed band: WiFi
 - » Wireless in licensed spectrum: cellular
 - » Focus is on optimizing performance with limited spectrum
 - » Sophisticated protocols to fight challenging physical layer
- Other wireless communication technologies
 - » RFID/NFC, low-power, satellite, UWB, visible light, ...
- Localization and sensing
 - » GPS, Wifi for localization and sensing, ...
- Wireless deployments
 - » Infrastructure WiFi, ad hoc, sensor networks, vehicular, DTN, visible light, ..
 - » Some topics covered in the surveys

Peter A. Steenkiste. CMU 21

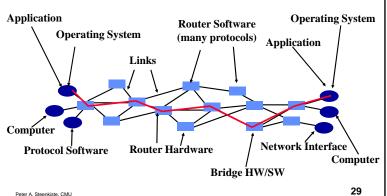
Outline

Goals and structure of the course

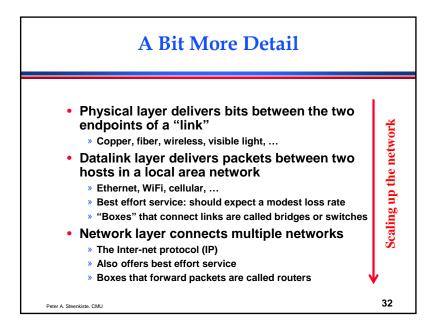
- Administrative stuff
- A bit of history
- Wireless technologies
- Building a network
 - » What pieces do we need
 - » The OSI model
 - » Packet-based communication
 - » Challenges in Wireless Networking

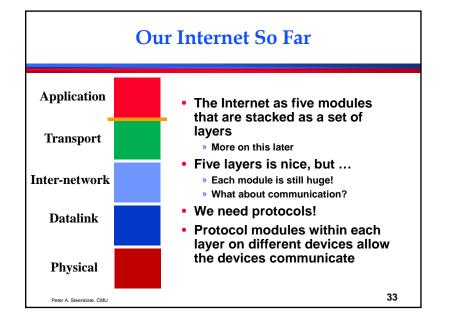
Peter A. Steenkiste. CMU

Some History...

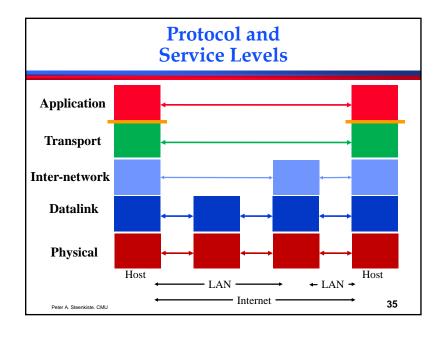

- Tesla credited with first radio communication in 1893
- Wireless telegraph invented by Guglielmo Marconi in 1896
- First telegraphic signal traveled across the Atlantic ocean in 1901
- First "cell phone" concept developed in 1946

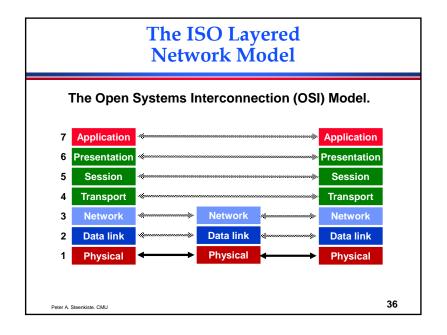
 » But only voice data took another 50+ years
- GPS project started in 1973, complete in 1995
- WiFi technology developed in the mid-1990s

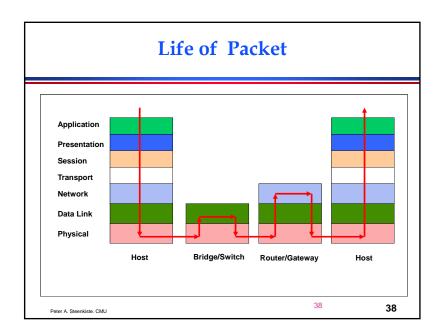

Peter A. Steenkiste. CMU 22

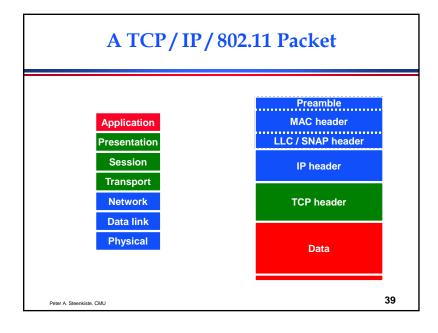

The Internet is Big and Has Many, Many Pieces

How do you design something this complex?




What Pieces Do We Need? Module: We need to be able to send bits » Over wired and wireless links **Physical** » Based on analog signals We really want to send packets **Datalink** » Statistical multiplexing: users can share link Network » Need addresses to deliver packets correctly But network may not be reliable **Transport** » Bit errors, lost packets, ... » Must recover from these errors end-to-end You need applications and services **Application** » Otherwise: who cares? 30 Peter A. Steenkiste, CMU



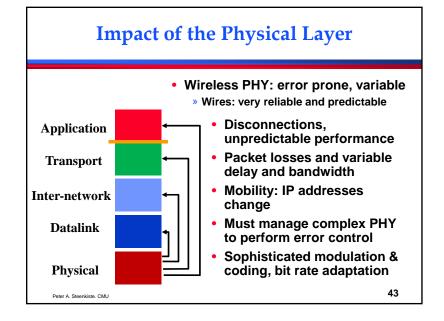

Protocol Enable Communication Friendly greeting An agreement between parties on how communication should take place. Protocols must define many aspects of the communication. Muttered reply • Syntax: » Data encoding, language, etc. Semantics: Get to Heinz Hall? » Error handling, termination, ordering of requests, etc. · Protocols at hardware, software, That way .. all levels! · Example: Buying airline ticket by typing. Thank you Syntax: English, ascii, lines delimited by "\n" Peter A. Steenkiste, CMU



OSI Functions (1) Physical: transmission of a bit stream. (2) Data link: flow control, framing, error detection. (3) Network: switching and routing. (4) Transport: reliable end to end delivery. (5) Session: managing logical connections. (6) Presentation: data transformations. (7) Application: specific uses, e.g. mail, file transfer, telnet, network management.

OSI Motivation Standard approach of breaking up a system in a set of components with well defined interfaces, but components are organized as a set of layers. » Only horizontal and vertical communication » Components/layers can be implemented and modified in isolation without affecting the other components Each layer offers a service to the higher layer, using the services of the lower layer. "Peer" layers on different systems communicate via a protocol. » higher level protocols (e.g. TCP/IP, Appletalk) can run on multiple lower layers » multiple higher level protocols can share a single physical network 41 Peter A. Steenkiste. CMU

Benefits of Layered Architecture


- Significantly reduces the complexity of building and maintaining the system.
 - » Effort is 7 x N instead of N⁷ for N versions per layer
- The implementation of a layer can be replaced True easily as long as its interfaces are respected For

Wireless?

42

- » Does not impact the other components in the system
- » Different implementation versus different protocols
- In practice: most significant evolution and diversity at the top and bottom:
 - » Applications: web, peer-to-peer, video streaming, ..
 - » Physical layers: optical, wireless, new types of copper
 - » Only the Internet Protocol in the "middle" layer

Peter A. Steenkiste, CMU

