

18-452/18-750
Wireless Networks and Applications
Lecture 6: Physical Layer
Diversity and Coding

Peter Steenkiste
Carnegie Mellon University

Spring Semester 2017

<http://www.cs.cmu.edu/~prs/wirelessS17/>

Peter A. Steenkiste

1

Diversity Techniques

- The quality of the channel depends on time, space, and frequency
- **Space diversity:** use multiple nearby antennas and combine signals
 - » Both at the sender and the receiver
- **Time diversity:** spread data out over time
 - » Useful for burst errors, i.e., errors are clustered in time
- **Frequency diversity:** spread signal over multiple frequencies
 - » For example, spread spectrum
- **Distribute data over multiple “channels”**
 - » “Channels” experience different frequency selective fading, so only part of the data is affected

Peter A. Steenkiste

3

Outline

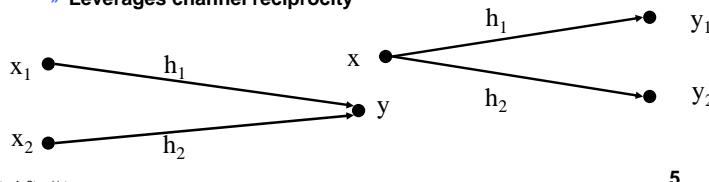
- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
 - » Space, time and frequency diversity
- OFDM

Typical
Bad News
Good News
Story

Peter A. Steenkiste

2

Space Diversity


- Use multiple antennas that pick up/transmit the signal in slightly different locations
- If antennas are sufficiently separated, instantaneous channel conditions are independent
 - » Antennas should be separated by $1/2$ wavelength or more
- If one antenna experiences deep fading, the other antenna has a strong signal
- Represents a wide class of techniques
 - » Use on transmit and receive side - channels are symmetric
 - » Level of sophistication of the algorithms used
 - » Can use more than two antennas!

Peter A. Steenkiste

4

Selection Diversity

- **Receiver diversity:** receiver picks the antenna with the best SNR
 - » Very easy
- **Transmit diversity:** sender picks the antenna that offers the best channel to the receiver
 - » Transmitter can learn the channel conditions based on signals sent by the receiver
 - » Leverages channel reciprocity

Peter A. Steenkiste

5

Simple Algorithm in (older) 802.11

- Combine transmit + receive selection diversity
 - » Assume packets are acknowledged – why?
- How to explore all channels to find the best one ... or at least the best transmit antenna
- **Receiver:**
 - » Uses the antenna with the strongest signal
 - » Always use the same antenna to send the acknowledgement – gives feedback to the sender
- **Sender:**
 - » Picks an antenna to transmit and learns about the channel quality based on the ACK
 - » Needs to occasionally try the other antenna to explore the channel between all four channel pairs

Peter A. Steenkiste

6

Receiver Diversity Can we Do Better?

- **But why not use both signals?**
 - » 2 Signals contain more information than 1
 - » What can go wrong?
- **Simply adding the two signals has drawbacks:**
 - » Signals may be out of phase, e.g. kind of like multi-path; can reduce the signal strength!
 - » We want to make sure we do not amplify the noise
- **Maximal ratio combining: combine signals with a weight that is based on their SNR**
 - » Weight will favor the strongest signal (highest SNR)
 - » Also: equal gain combining as a quick and dirty alternative

Peter A. Steenkiste

7

Receiver Diversity Optimization

$$x \xrightarrow{h_1} y_1 \quad \vec{y} = \vec{h} * \vec{x} + \vec{n}$$

$$x \xrightarrow{h_2} y_2 \quad \vec{h} = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$$

- **Multiply \vec{y} with the complex conjugate \vec{h}^* of the channel vector \vec{h}**
 - » Aligns the phases of the two signals so they amplify each other
 - » Scales the signals with their magnitude so the effect of noise is not amplified
- **Can learn \vec{h} based on training data**

Peter A. Steenkiste

8

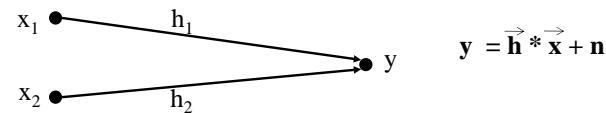
The Details

- Complex conjugates: same real part but imaginary parts of opposite signs

$$\vec{h}^* * \vec{y} = \vec{h}^* * (\vec{h} * \vec{x} + \vec{n})$$

Where $\vec{h}^* = [h_1^* \ h_2^*] = [a_1+b_1i \ a_2-b_2i]$

- Result:


signal x is scaled by $a_1^2 + b_1^2 + a_2^2 + b_2^2$
noise becomes: $h_1^* * n_1 + h_2^* * n_2$

Peter A. Steenkiste

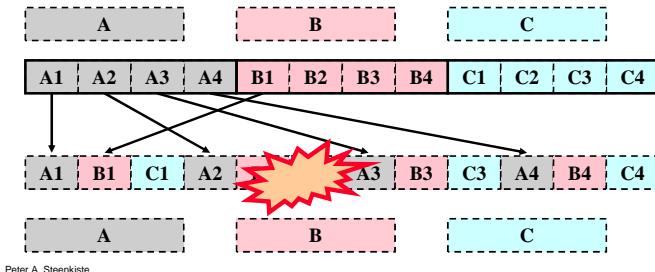
9

Transmit Diversity

- Same as receive diversity but the transmitter has multiple antennas
- Maximum ratio combining: sender “precodes” the signal
 - Pre-align the phases at receiver and distribute power over the transmit antennas (total power fixed)
- How does transmitter learn channel?
 - Channel reciprocity: learn from packets received Y

10

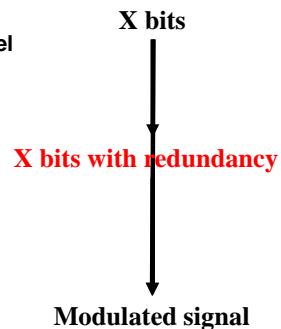
Adding Redundancy


- Protects digital data by introducing redundancy in the transmitted data.
 - Error detection codes: can identify certain types of errors
 - Error correction codes: can fix certain types of errors
- Block codes provide Forward Error Correction (FEC) for blocks of data.
 - (n, k) code: n bits are transmitted for k information bits
 - Simplest example: parity codes
 - Many different codes exist: Hamming, cyclic, Reed-Solomon, ...
- Convolutional codes provide protection for a continuous stream of bits.
 - Coding gain is n/k
 - Turbo codes: convolutional code with channel estimation

Peter A. Steenkiste

11

Combine Redundancy with Time Diversity


- Fading can cause burst errors: a relatively long sequence of bits is corrupted
- Spread blocks of bytes out over time so redundancy can help recover from the burst
 - Example: only need 3 out of 4 to recover the data

12

Bits, Symbols, and Chips

- Redundancy and time diversity can be added easily at the application layer
- Can we do it lower in the stack?
 - » Need to adapt quickly to the channel
- So far: use bits to directly modulate the signal
- Idea: add a coding layer – provides a level of indirection
- Can add redundancy and adjust level of redundancy quickly based on channel conditions

Peter A. Steenkiste

13

Discussion

- Error coding increases robustness at the expense of having to send more bits
 - » Technically this means that you need more spectrum
- But: since you can tolerate some errors, you may be able to increase the bit rate through more aggressive modulation
- Coding and modulation combined offer a lot of flexibility to optimize transmission
- Next steps:
 - » Apply a similar idea to frequency diversity
 - » Combine coding with frequency and time diversity in OFDM

Peter A. Steenkiste

14

Summary

- Space diversity really helps in overcoming fading
 - » Very widely deployed
 - » Will build on this when we discuss MIMO
- Coding is also an effective way to improve throughput
 - » Widely used in all modern standards
 - » Coding, combined with modulation, can be adapt quickly to channel conditions

Peter A. Steenkiste

15

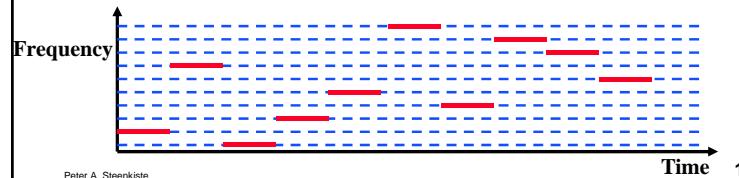
Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
 - » Space, time and frequency diversity
- OFDM

Peter A. Steenkiste

16

Spread Spectrum


- Spread transmission over a wider bandwidth
 - » Don't put all your eggs in one basket!
- Good for military: jamming and interception becomes harder
- Also useful to minimize impact of a “bad” frequency in regular environments
- But what is the cost?
- What can be gained from this apparent waste of spectrum?
 - » Immunity from various kinds of noise and multipath distortion
 - » Can be used for hiding and encrypting signals
 - » Several users can independently use the same higher bandwidth with very little interference

Peter A. Steenkiste

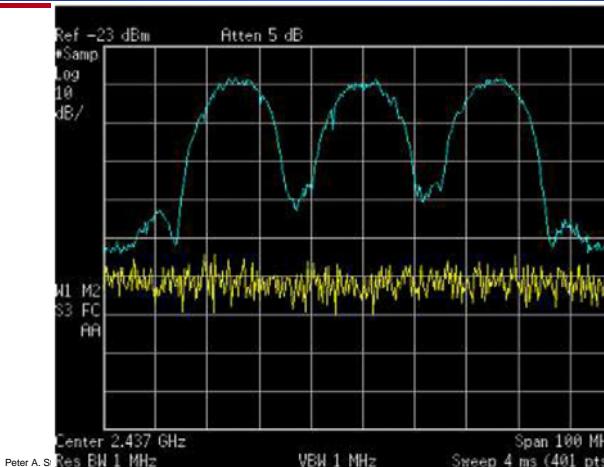
17

Frequency Hopping Spread Spectrum (FHSS)

- Have the transmitter hop between a seemingly random sequence of frequencies
 - » Each frequency has the bandwidth of the original signal
- Dwell time is the time spent using one frequency
- Spreading code determines the hopping sequence
 - » Must be shared by sender and receiver (e.g. standardized)

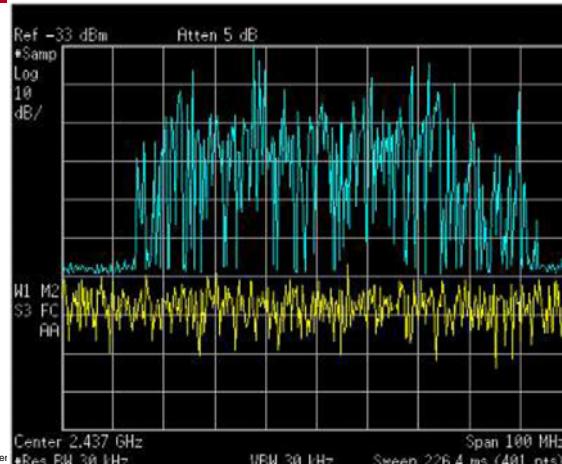
Peter A. Steenkiste

18


Example: Original 802.11 Standard (FH)

- Used frequency hopping: 96 channels of 1 MHz
 - » Only 78 used in US; other countries used different numbers
 - » Each channel carries only ~1% of the bandwidth
 - » Uses 2 GFSK or 4 GFSK for modulation (1 or 2 Mbps)
- The dwell time was configurable
 - » FCC set an upper bound of 400 msec
 - » Transmitter/receiver must be synchronized
- Standard defined 26 orthogonal hop sequences
- Transmitter used a beacon on fixed frequency to inform the receiver of its hop sequence
- Can support multiple simultaneous transmissions – use different hop sequences
 - » E.g. up to 10 co-located APs with their clients

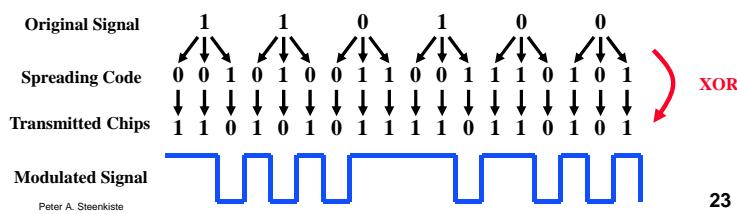
Peter A. Steenkiste


19

802.11 Spectrogram

20

Frequency Hopping Spectrogram

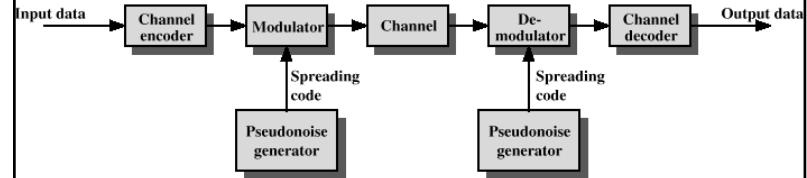

21

- **Uses frequency hopping spread spectrum in the 2.4 GHz ISM band**
- **Uses 79 frequencies with a spacing of 1 MHz**
 - » Other countries use different numbers of frequencies
- **Frequency hopping rate is 1600 hops/s**
- **Signal uses GFSK**
 - » Minimum deviation is 115 KHz
- **Maximum data rate is 1 MHz**

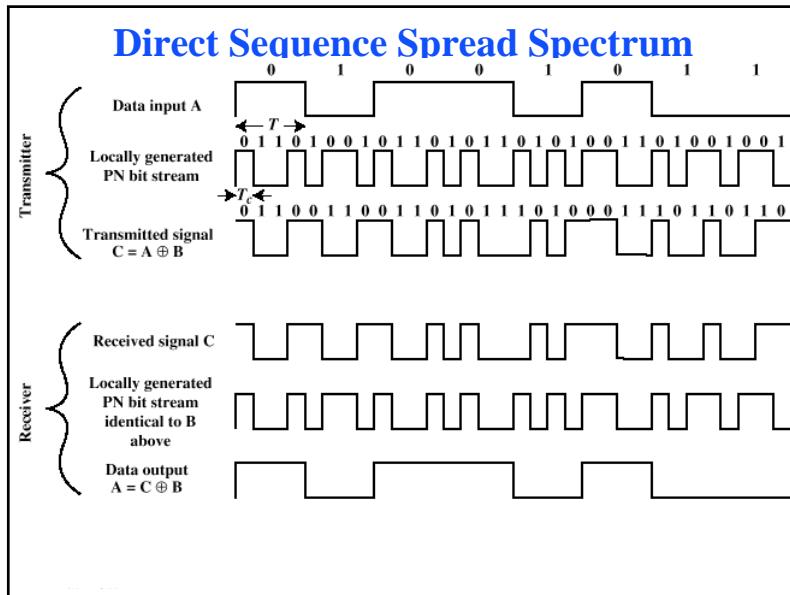
22

Direct Sequence Spread Spectrum (DSSS)

- Each bit in original signal is represented by multiple bits (chips) in the transmitted signal
- Spreading code spreads signal across a wider frequency band
 - » Spread is in direct proportion to number of bits used
 - » E.g. exclusive-OR of the bits with the spreading code
- The resulting bit stream is used to modulate the signal


23

Example: Bluetooth


- **Uses frequency hopping spread spectrum in the 2.4 GHz ISM band**
- **Uses 79 frequencies with a spacing of 1 MHz**
 - » Other countries use different numbers of frequencies
- **Frequency hopping rate is 1600 hops/s**
- **Signal uses GFSK**
 - » Minimum deviation is 115 KHz
- **Maximum data rate is 1 MHz**

22

Spread Spectrum

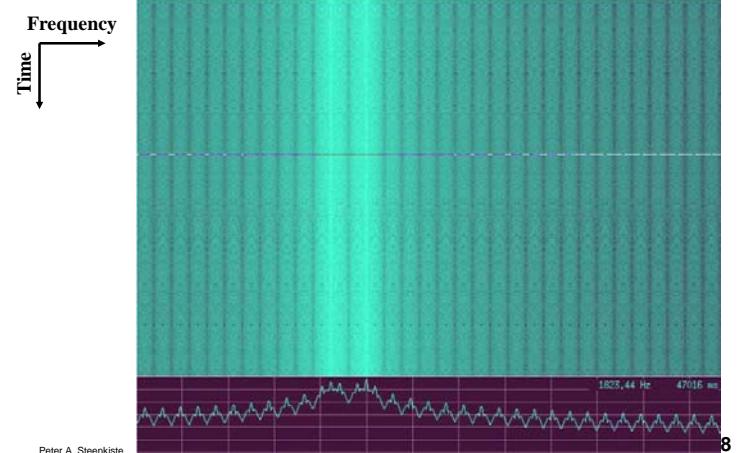
24

Properties

- Since each bit is sent as multiple chips, you need more bps bandwidth to send the signal.
 - Number of chips per bit is called the spreading ratio
- Given the Nyquist and Shannon results, you need more spectral bandwidth to do this.
 - Spreading the signal over the spectrum
- Advantage is that transmission is more resilient.
 - Effective against noise and multi-path
 - DSSS signal will look like noise in a narrow band
 - Can lose some chips in a word and recover easily
- Multiple users can share bandwidth (easily).
 - Follows directly from Shannon (capacity is there)
 - Next topic

Peter A. Steenkiste

26


Example: Original 802.11 Standard (DSSS)

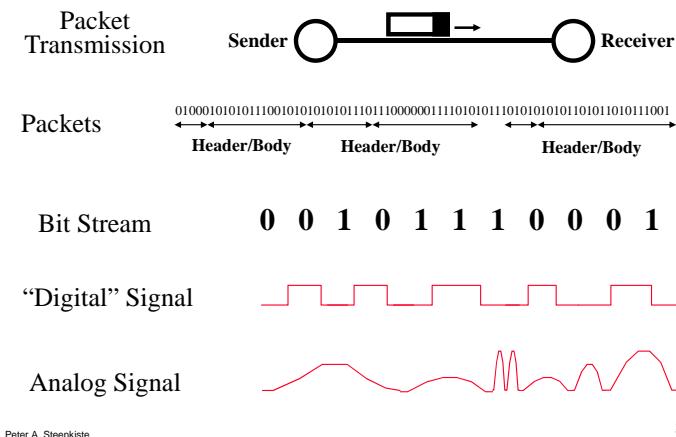
- The DS PHY uses a 1 Msymbol/s rate with an 11-to-1 spreading ratio and a Barker chipping sequence
 - Barker sequence has low autocorrelation properties – why?
 - Uses about 22 MHz
- Receiver decodes by counting the number of “1” bits in each word
 - 6 “1” bits correspond to a 0 data bit
- Chips were transmitted using DBPSK modulation
 - Resulting data rate is 1 Mbps (i.e. 11 Mchips/sec)
 - Extended to 2 Mbps by using a DQPSK modulation
 - Requires the detection of a ¼ phase shift

Peter A. Steenkiste

27

Spectrogram: DSSS-encoded Signal

8


Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Equalization and diversity
- Modulation and coding
 - » Coding and modulation
 - » Amplitude, frequency, phase
 - » Code division multiple access
 - » OFDM
- Some newer technologies
- Spectrum access

Peter A. Steenkiste

29

From Signals to Packets

Code Division Multiple Access

- Users share spectrum, i.e., use it at the same time, but they use different codes to spread their data over the frequency
 - » DSSS where users use different spreading sequences
 - » Use spreading sequences that are orthogonal, i.e. they have minimal overlap
 - » Frequency hopping with different hop sequences
- The idea is that users will only rarely overlap and the inherent robustness of DSSS will allow users to recover if there is a conflict
 - » Overlap = use the same frequency at the same time
 - » The signal of other users will appear as noise

Peter A. Steenkiste

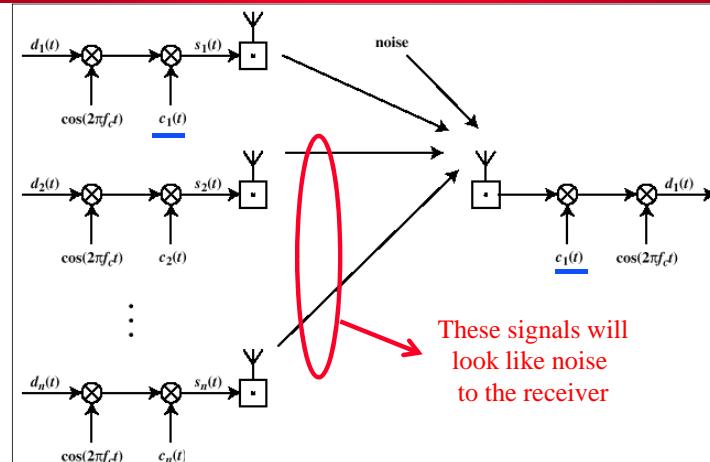
31

CDMA Principle

- Basic Principles of CDMA
 - » D = rate of data signal
 - » Break each bit into k chips - user-specific fixed pattern
 - » Chip data rate of new channel = kD
- If $k=6$ and code is a sequence of 1s and -1s
 - » For a '1' bit, A sends code as chip pattern
 - $\langle c1, c2, c3, c4, c5, c6 \rangle$
 - » For a '0' bit, A sends complement of code
 - $\langle -c1, -c2, -c3, -c4, -c5, -c6 \rangle$
- Receiver knows sender's code and performs electronic decode function
 - $$S_u(d) = d1 \times c1 + d2 \times c2 + d3 \times c3 + d4 \times c4 + d5 \times c5 + d6 \times c6$$
 - $\langle d1, d2, d3, d4, d5, d6 \rangle$ = received chip pattern
 - $\langle c1, c2, c3, c4, c5, c6 \rangle$ = sender's code

Peter A. Steenkiste

32


CDMA Example

- **User A code = $\langle 1, -1, -1, 1, -1, 1 \rangle$**
 - » To send a 1 bit = $\langle 1, -1, -1, 1, -1, 1 \rangle$
 - » To send a 0 bit = $\langle -1, 1, 1, -1, 1, -1 \rangle$
- **User B code = $\langle 1, 1, -1, -1, 1, 1 \rangle$**
 - » To send a 1 bit = $\langle 1, 1, -1, -1, 1, 1 \rangle$
- **Receiver receiving with A's code**
 - » (A's code) \times (received chip pattern)
 - User A '1' bit: 6 \rightarrow 1
 - User A '0' bit: -6 \rightarrow 0
 - User B '1' bit: 0 \rightarrow unwanted signal ignored

Peter A. Steenkiste

33

CDMA for Direct Sequence Spread Spectrum

CDMA Discussion

- CDMA does not assign a fixed bandwidth but a user's bandwidth depends on the traffic load
 - » More users results in more "noise" and less throughput for each user, e.g. more information lost due to errors
 - » How graceful the degradation is depends on how orthogonal the codes are
 - » TDMA and FDMA have a fixed channel capacity
- Weaker signals may be lost in the clutter
 - » This will systematically put the same node pairs at a disadvantage – not acceptable
 - » The solution is to add power control, i.e. nearby nodes use a lower transmission power than remote nodes

Peter A. Steenkiste

35

CDMA Example

- CDMA cellular standard.
 - » Used in the US, e.g. Sprint
- Allocates 1.228 MHz for base station to mobile communication.
 - » Shared by 64 "code channels"
 - » Used for voice (55), paging service (8), and control (1)
- Provides a lot error coding to recover from errors.
 - » Voice data is 8550 bps
 - » Coding and FEC increase this to 19.2 kbps
 - » Then spread out over 1.228 MHz using DSSS; uses QPSK

Peter A. Steenkiste

36

Summary

- **Spread spectrum achieves robustness by spreading out the signal over a wide channel**
 - » Sending different data blocks on different frequencies, or
 - » Spreading all data across the entire channel
- **CDMA builds on the same concept by allowing multiple senders to simultaneously use the same channel**
 - » Sender and receiver must coordinate so receiver can decode the data