

18-452/18-750
Wireless Networks and Applications
Lecture 5: Physical Layer
Signal Propagation and Modulation

Peter Steenkiste
Carnegie Mellon University

Spring Semester 2017

<http://www.cs.cmu.edu/~prs/wirelessS17/>

Peter A. Steenkiste

1

Propagation Degrades RF Signals

- Attenuation in free space: signal gets weaker as it travels over longer distances
 - » Radio signal spreads out – free space loss
 - » Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
 - » Reflection redirects part of the signal
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
 - » Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up
 - » Node moves $1/2$ wavelength -> big change in signal strength

Peter A. Steenkiste

3

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
 - » How do antennas work
 - » Propagation properties of RF signals (the really sad part)
 - » Modeling the channel
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

2

Free Space Loss

$$\begin{aligned}\text{Loss} &= P_t / P_r = (4\pi d)^2 / (G_r G_t \lambda^2) \\ &= (4\pi f d)^2 / (G_r G_t c^2)\end{aligned}$$

- Loss increases quickly with distance (d^2).
- Need to consider the gain of the antennas at transmitter and receiver.
- Loss depends on frequency: higher loss with higher frequency.
 - » Can cause distortion of signal for wide-band signals
 - » Impacts transmission range in different spectrum bands

Peter A. Steenkiste

4

Log Distance Path Loss Model

- Log-distance path loss model captures free space attenuation plus additional absorption by energy by obstacles:

$$\text{Loss}_{\text{db}} = L_0 + 10 n \log_{10}(d/d_0)$$

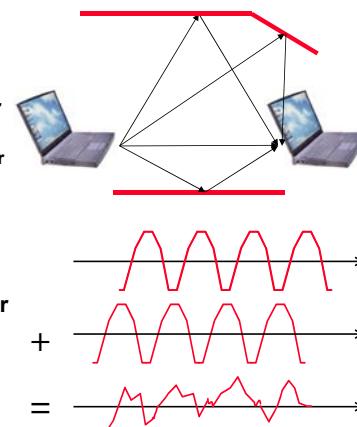
- Where L_0 is the loss at distance d_0 and n is the path loss distance component
- Value of n depends on the environment:

- » 2 is free space model
- » 2.2 office with soft partitions
- » 3 office with hard partitions
- » Higher if more and thicker obstacles

Peter A. Steenkiste

5

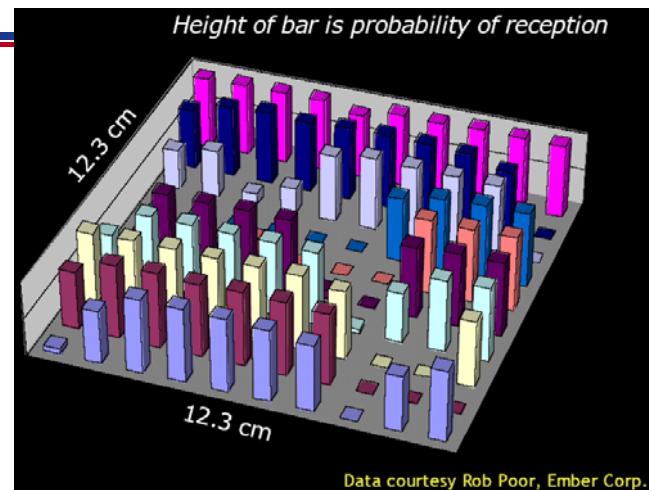
Obstacles and Atmosphere


- Objects absorb energy as the signal passes through them
 - » Degree of absorption depends strongly on the material
 - » Paper versus brick versus metal
- Absorption of energy in the atmosphere.
 - » Very serious at specific frequencies, e.g. water vapor (22 GHz) and oxygen (60 GHz)
- Refraction/refraction in the atmosphere
 - » Pockets of air can have different properties, e.g., humidity, temperature, ...
 - » Redirects the signal in unpredictable ways
 - » Can reduce energy and increase path length

Peter A. Steenkiste

6

Multipath Effect


- Receiver receives multiple copies of the signal, each following a different path
- Copies can either strengthen or weaken each other
 - » Depends on whether they are in or out of phase
- Changes of half a wavelength affect the outcome
 - » Short wavelengths, e.g. 2.4 GHz → 12 cm, 900 MHz → ~1 ft
- Small adjustments in location or orientation of the wireless devices can result in big changes in signal strength

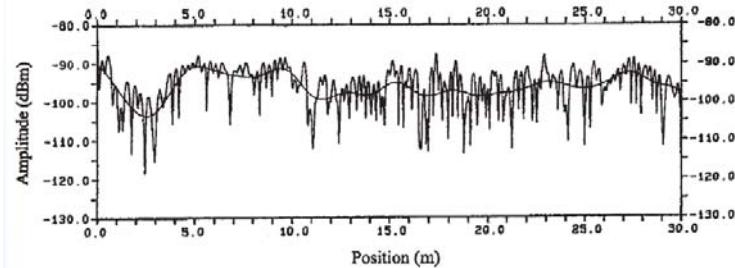
Peter A. Steenkiste

7

Example: 900 MHz

Peter A. Steenkiste

8

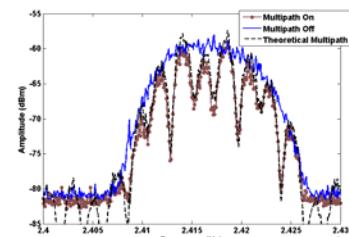

Fading in the Mobile Environment

- **Fading:** time variation of the received signal strength caused by changes in the transmission medium or paths.
 - » Rain, moving obstacles, moving sender/receiver, ...
- **Slow:** changes the paths that make up the received signal – results in a change in the average power levels around which the fast fading takes place
 - » Mobility affects path length and the nature of obstacles
- **Fast:** changes in distance of about half a wavelength – results in big fluctuations in the instantaneous power

Peter A. Steenkiste

9

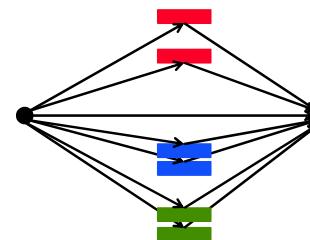
Fading - Example

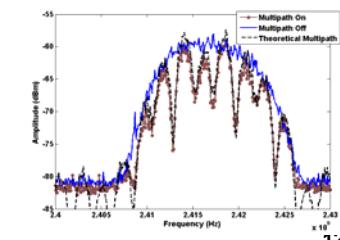

- Frequency of 910 MHz or wavelength of about 33 cm

Peter A. Steenkiste

10

Frequency Selective versus Non-selective Fading


- **Non-selective (flat) fading:** fading affects all frequency components in the signal equally
 - » There is only a single path, or a strongly dominating path, e.g., LOS
- **Selective fading:** frequency components experience different degrees of fading
 - » Multiple paths with path lengths that change independently
 - » Region of interest is the spectrum used by the channel


11

Some Intuition for Selective Fading

- Assume three paths between a transmitter and receiver
- The outcome is determined by the differences in path length
 - » But expressed in wavelengths → outcome depends on frequency
- As transmitter, receivers or obstacles move, the path length differences change, i.e., there is fading
 - » But changes depend on wavelength, i.e. fading is frequency selective
- Significant concern for wide-band channels

Peter A. Steenkiste

12

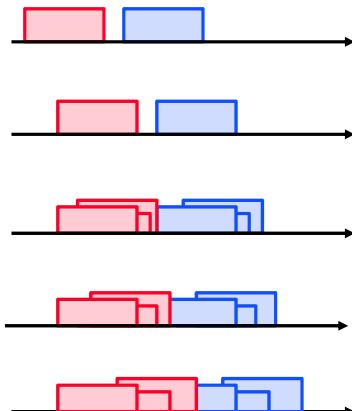
Multi-Path and Fading Videos

- Single path
- Multi-path
- Multi-path + mobility

Peter A. Steenkiste

13

Example Fading Channel Models


- Ricean distribution: LOS path plus indirect paths
 - » Open space or small cells
 - » K = power in dominant path/power in scattered paths
 - » Speed of movement and min-speed
- Raleigh distribution: multiple indirect paths but no dominating or direct LOS path
 - » Lots of scattering, e.g. urban environment, in buildings
 - » Sum of uncorrelated Gaussian variables
 - » $K = 0$ is Raleigh fading
- Nakagami can be viewed as generalization: sum of independent Raleigh paths
 - » Clusters or reflectors resulting paths with Raleigh fading, but with different path lengths
- Many others!

Peter A. Steenkiste

14

Inter-Symbol Interference

- Larger difference in path length can cause inter-symbol interference (ISI)
 - » Different from effect of carrier phase differences
- Delays on the order of a symbol time result in overlap of the symbols
 - » Makes it very hard for the receiver to decode
 - » Corruption issue – not signal strength
 - » Significant concern for high bit rates (short symbol times)

Peter A. Steenkiste

15

How Bad is the Problem?

- Assume binary encoding
 - » Times will increase with more complex symbol
 - » More complex encoding also requires higher SINR
- Some bit times and distances:

Rate Mbs	Time microsec	Distance meter
1	1	300
5	0.2	60
10	0.1	30
50	0.02	6

- Distances are much longer than for fast fading!
 - » Wavelength at 2.4 GHz: 14 cm

Peter A. Steenkiste

16

Doppler Effect

- Movement by the transmitter, receiver, or objects in the environment can also create a doppler shift:

$$f_m = (v / c) * f$$

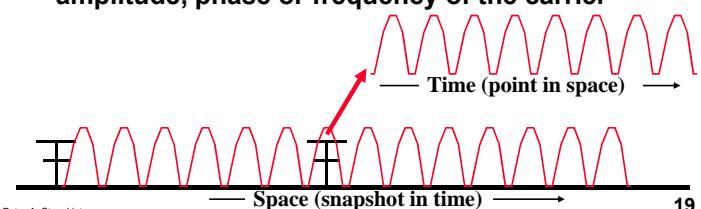
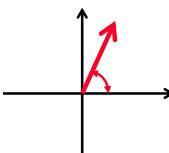
- Results in distortion of signal
 - Shift may be larger on some paths than on others
 - Shift is also frequency dependent (minor)
- Effect only an issue at higher speeds:
 - Speed of light: $3 * 10^8$ m/s
 - Speed of car: 10^5 m/h = 27.8 m/s
 - Shift at 2.4 GHz is 222 Hz

Peter A. Steenkiste

17

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
 - How do antennas work
 - Propagation properties of RF signals
 - Modeling the channel
- Modulation
- Diversity and coding
- OFDM



Typical
Bad News
Good News
Story

Peter A. Steenkiste

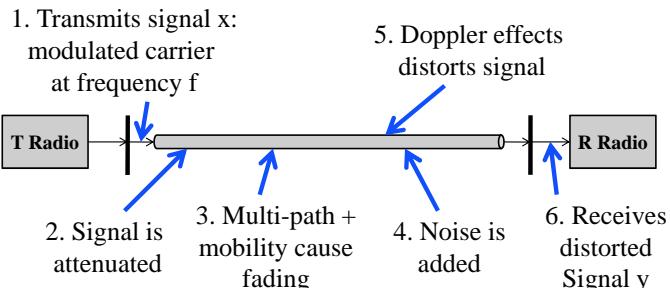
18

Remember: Representing a Channel

- Communication is based on the sender transmitting the carrier signal
 - A sine wave with an amplitude, phase, frequency
 - A complex value at a certain point in space and time captures the amplitude and phase
 - It changes with a frequency f
- Sender sends information by changing the amplitude, phase or frequency of the carrier

Peter A. Steenkiste

19


Channel State

- The channel state c is a complex number that captures attenuation, multi-path, ... effects
 - Represents phase and amplitude
- c changes over time, i.e., fading
 - Change is continuous, but represented as a sequence of values c_i
 - The sampling rate depends on how fast c changes – must sample at twice the frequency (Nyquist)
- In general, c depends on the frequency: $c(f)$
 - Frequency selective fading or attenuation, e.g., f impacts loss caused by obstacles, or signal propagation properties
 - The dependency is much more of a concern for wide-band channels

Peter A. Steenkiste

20

Channel Model

Peter A. Steenkiste

21

Power Budget

$$R_{\text{power}} (\text{dBm}) = T_{\text{power}} (\text{dBm}) + \text{Gains} (\text{dB}) - \text{Losses} (\text{dB})$$

- **Receiver needs a certain SINR to be able to decode the signal**
 - » Required SINR depends on coding and modulation schemes, i.e. the transmit rate
- **Factors reducing power budget:**
 - » Noise, attenuation (multiple sources), fading, ..
- **Factors improving power budget:**
 - » Antenna gains, transmit power

Peter A. Steenkiste

22

Channel Reciprocity Theorem

- If the role of the transmitter and the receiver are interchanged, the instantaneous signal transfer function between the two remains unchanged
- Informally, the properties of the channel between two antennas is the same in both directions, i.e. the channel is symmetric
- Channel in this case includes all the signal propagation effects and the antennas

Peter A. Steenkiste

23

Reciprocity Does not Apply to Wireless “Links”

- “Link” corresponds to the packet level connection between the devices
 - » In other words, the throughput you get in the two directions can be different.
- The reason is that many factors that affect throughput may be different on the two devices:
 - » Transmit power and receiver threshold
 - » Quality of the transmitter and receiver (radio)
 - » Observed noise
 - » Interference
 - » Different antennas may be used (spatial diversity - see later)

Peter A. Steenkiste

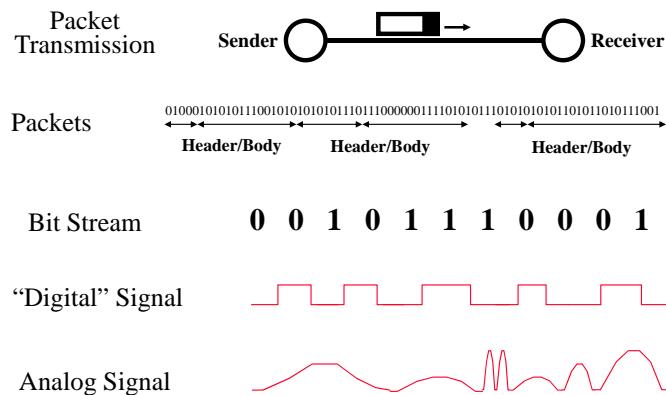
24

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Coding and diversity
- OFDM

Peter A. Steenkiste

25

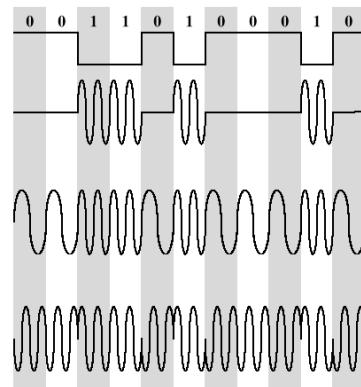

(Limited) Goals

- Non-goal: turn you into electrical engineers
- Basic understanding of how modulation can be done
- Understand the tradeoffs involved in speeding up the transmission

Peter A. Steenkiste

26

From Signals to Packets



Peter A. Steenkiste

27

Basic Modulation Techniques

- Encode digital data in an analog signal
- **Amplitude-shift keying (ASK)**
 - » Amplitude difference of carrier frequency
- **Frequency-shift keying (FSK)**
 - » Frequency difference near carrier frequency
- **Phase-shift keying (PSK)**
 - » Phase of carrier signal shifted

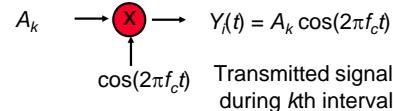
Peter A. Steenkiste

Amplitude-Shift Keying

- One binary digit represented by presence of carrier, at constant amplitude
- Other binary digit represented by absence of carrier

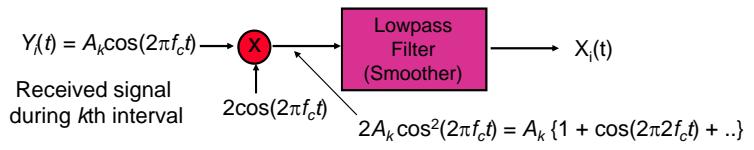
$$s(t) = \begin{cases} A \cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

– where the carrier signal is $A \cos(2\pi f_c t)$


- Inefficient because of sudden gain changes
 - Only used when bandwidth is not a concern, e.g. on voice lines (< 1200 bps) or on digital fiber
- A can be a multi-bit symbol

Peter A. Steenkiste

29


Modulator & Demodulator

Modulate $\cos(2\pi f_c t)$ by multiplying by A_k for T seconds:

Transmitted signal during k th interval

Demodulate (recover A_k) by multiplying by $2\cos(2\pi f_c t)$ for T seconds and lowpass filtering (smoothing):

Peter A. Steenkiste

30

Binary Frequency-Shift Keying (BFSK)

- Two binary digits represented by two different frequencies near the carrier frequency

$$s(t) = \begin{cases} A \cos(2\pi f_1 t) & \text{binary 1} \\ A \cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

– where f_1 and f_2 are offset from carrier frequency f_c by equal but opposite amounts

- Less susceptible to error than ASK
- Sometimes used for radio or on coax
- Demodulator looks for power around f_1 and f_2

Peter A. Steenkiste

31

How Can We Go Faster?

- Increase the rate at which we modulate the signal, or ...
- Modulate the signal with “symbols” that send multiple bits
 - I.e., each symbol represents more information
 - Of course, we can also try to send symbols faster
- Which solution is the best depends on the many factors
 - We will not worry about that in this course

Peter A. Steenkiste

32

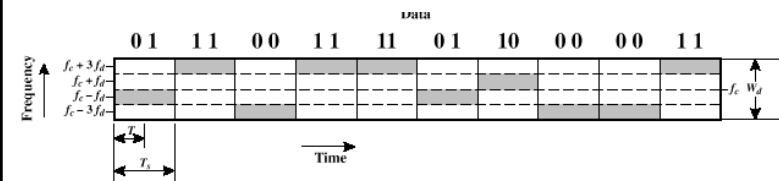
Multiple Frequency-Shift Keying (MFSK)

- More than two frequencies are used

- Each symbol represents L bits

$$s_i(t) = A \cos 2\pi f_i t \quad 1 \leq i \leq M$$

- $f_i = f_c + (2i - 1 - M)f_d$
- L = number of bits per signal element
- M = number of different signal elements = 2^L
- f_c = the carrier frequency
- f_d = the difference frequency


- More bandwidth efficient but more susceptible to error

» Symbol length is $T_s = LT$ seconds, where T is bit period

Peter A. Steenkiste

33

Multiple Frequency-Shift Keying (MFSK)

Peter A. Steenkiste

34

Phase-Shift Keying (PSK)

- Two-level PSK (BPSK)

» Uses two phases to represent binary digits

$$s(t) = \begin{cases} A \cos(2\pi f_c t) & \text{binary 1} \\ A \cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}$$

$$= \begin{cases} A \cos(2\pi f_c t) & \text{binary 1} \\ -A \cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

- Differential PSK (DPSK)

» Phase shift with reference to previous bit

- Binary 0 – signal of same phase as previous signal burst
- Binary 1 – signal of opposite phase to previous signal burst

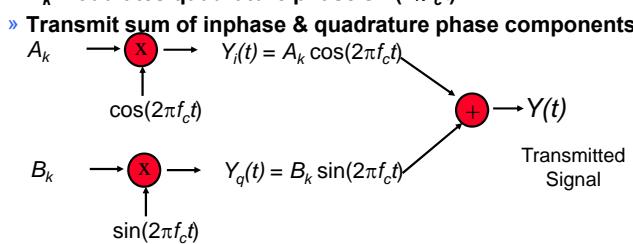
Peter A. Steenkiste

35

Phase-Shift Keying (PSK)

- Four-level PSK (QPSK)

» Each element represents more than one bit

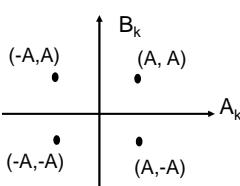

$$s(t) = \begin{cases} A \cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11 \\ A \cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01 \\ A \cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00 \\ A \cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

Peter A. Steenkiste

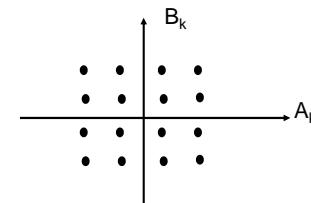
36

Quadrature Amplitude Modulation (QAM)

- QAM uses two-dimensional signaling
 - A_k modulates in-phase $\cos(2\pi f_c t)$
 - B_k modulates quadrature phase $\sin(2\pi f_c t)$


- $Y_i(t)$ and $Y_q(t)$ both occupy the bandpass channel
- QAM sends 2 pulses/Hz

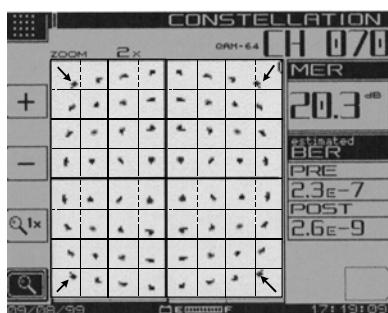
Peter A. Steenkiste


37

Signal Constellations

- Each pair (A_k, B_k) defines a point in the plane
- Signal constellation** set of signaling points

4 possible points per T sec.
2 bits / pulse



16 possible points per T sec.
4 bits / pulse

Peter A. Steenkiste

38

How Does Distortion Impact a Constellation Diagram?

- Changes in amplitude, phase or frequency move the points in the diagram
- Large shifts can create uncertainty on what symbol was transmitted
- Larger symbols are more susceptible
- Can Adapt symbol size to channel conditions to optimize throughput

www.cascaderange.org/presentations/Distortion_in_the_Digital_World-F2.pdf
Peter A. Steenkiste

39

Adapting to Channel Conditions

- Channel conditions can be very diverse
 - Affected by the physical environment of the channel
 - Changes over time as a result of slow and fast fading
- Fixed coding/modulation scheme will often be inefficient
 - Too conservative for good channels, i.e. lost opportunity
 - Too aggressive for bad channels, i.e. lots of packet loss
- Adjust coding/modulation based on channel conditions – “rate” adaptation
 - Controlled by the MAC protocol
 - E.g. 802.11a: BPSK – QPSK – 16-QAM – 64 QAM

Bad Good

Peter A. Steenkiste

40

Some Examples

- **Gaussian Frequency Shift Keying.**
 - » 1/-1 is a positive/negative frequency shift from base
 - » Gaussian filter is used to smooth pulses – reduces the spectral bandwidth – “pulse shaping”
 - » Used in Bluetooth
- **Differential quadrature phase shift keying.**
 - » Variant of “regular” frequency shift keying
 - » Symbols are encoded as changes in phase
 - » Requires decoding on $\pi/4$ phase shift
 - » Used in 802.11b networks
- **Quadrature Amplitude modulation.**
 - » Combines amplitude and phase modulation
 - » Uses two amplitudes and 4 phases to represent the value of a 3 bit sequence

Peter A. Steenkiste

41

Summary

- **Key properties for channels are:**
 - » Channel state that concisely captures many of the factors degrading the channel
 - » The power budget expresses the power at the receiver
 - » Channel reciprocity
- **Modulation changes the signal based on the data to be transmitted**
 - » Can change amplitude, phase or frequency
 - » The transmission rate can be increased by using symbols that represent multiple bits
 - Can use hybrid modulation, e.g., phase and amplitude
 - » The symbol size can be adapted based on the channel conditions – results in a variable bit rate transmission
 - » Details do not matter!

Peter A. Steenkiste

42