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Outline

 RF introduction
 Modulation and multiplexing - review
 Channel capacity
 Antennas and signal propagation
 Modulation
 Diversity and coding
 OFDM
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Relationship between Data Rate 
and Bandwidth

 The greater the (spectral) bandwidth, the 
higher the information-carrying capacity of 
the signal

 Intuition: if a signal can change faster, it  can 
be modulated in a more detailed way and can 
carry more data 

» E.g. more bits or higher fidelity music
 Extreme example: a signal that only changes 

once a second will not be able to carry a lot of 
bits or convey a very interesting TV channel

 Can we make this more precise?
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Increasing the Bit Rate

 Increases the rate at which the 
signal changes.

» Proportionally increases all 
signals present, and thus the 
spectral bandwidth

 Increase the number of bits per 
change in the signal

» Adds detail to the signal, 
which also increases the 
spectral BW
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Adding Detail to the Signal
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So Why Don’t we Always Send a 
Very High Bandwidth Signal?

 Channels have a limit on 
the type of signals they can 
carry

 Wires only transmit signals 
in certain frequency ranges
 Stronger attenuation and 

distortion outside of range
 Distortion makes it hard for 

receiver to extract the 
information

 Wireless radios are only 
allowed to use certain parts 
of the spectrum
 The radios are optimized for that 

frequency band

T R

Peter A. Steenkiste 7

Transmission Channel 
Considerations

 Example: grey frequencies get 
attenuated significantly

 For wired networks, channel 
limits are an inherent property of 
the wires

» Different types of fiber and copper 
have different properties

» Capacity also depends on the radio 
and modulation used

» Improves over time, even for same 
wire

 For wireless networks, limits are 
often imposed by policy

» Can only use certain part of the 
spectrum

» Radio uses filters to comply

Frequency

Good Bad

Signal
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Channel Capacity

 Data rate - rate at which data can be 
communicated (bps)

» Channel Capacity – the maximum rate at which data can 
be transmitted over a given channel, under given 
conditions  

 Bandwidth - the bandwidth of the transmitted 
signal as constrained by the transmitter and 
the nature of the transmission medium (Hertz)

 Noise - average level of noise over the 
communications path

 Error rate - rate at which errors occur
» Error = transmit 1 and receive 0; transmit 0 and receive 1
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The Nyquist Limit

 A noiseless channel of bandwidth B can at 
most transmit a binary signal at a capacity 2B

» E.g. a 3000 Hz channel can transmit data at a rate of at 
most 6000 bits/second

» Assumes binary amplitude encoding

 For M levels: C = 2B log2 M
» M discrete signal levels

 More aggressive encoding can increase the 
actual channel bandwidth

» Example: modems

 Factors such as noise can reduce the capacity

Peter A. Steenkiste 10

Decibels

 A ratio between signal powers is expressed in 
decibels

decibels (db) = 10log10(P1 / P2)
 Is used in many contexts:

» The loss of a wireless channel
» The gain of an amplifier

 Note that dB is a relative value.
 Can be made absolute by picking a reference 

point.
» Decibel-Watt – power relative to 1W
» Decibel-milliwatt – power relative to 1 milliwatt
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Signal-to-Noise Ratio

 Ratio of the power in a signal to the power 
contained in the noise that is present at a 
particular point in the transmission

» Typically measured at a receiver

 Signal-to-noise ratio (SNR, or S/N)

 A high SNR means a high-quality signal
 Low SNR means that it may be hard to 

“extract” the signal from the noise
 SNR sets upper bound on achievable data rate 

power noise
power signallog10)( 10dB SNR
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Shannon Capacity Formula

 Equation:

 Represents error free capacity
» It is possible to design a suitable signal code that will 

achieve error free transmission (you design the code)
 Result is based on many assumptions

» Formula assumes white noise (thermal noise)
» Impulse noise is not accounted for
» Various types of distortion are also not accounted for

 We can also use Shannon’s theorem to 
calculate the noise that can be tolerated to 
achieve a certain rate through a channel

 SNR1log2  BC
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Shannon Discussion

 Bandwidth B and noise N are not independent
» N is the noise in the signal band, so it increases with the 

bandwidth

 Shannon does not provide the coding that will 
meet the limit, but the formula is still useful

 The performance gap between Shannon and a 
practical system can be roughly accounted 
for by a gap parameter

» Still subject to same assumptions
» Gap depends on error rate, coding, modulation, etc.

  SNR/1log2BC
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Example of Nyquist and 
Shannon Formulations

 Spectrum of a channel between 3 MHz 
and 4 MHz ; SNRdB = 24 dB

 Using Shannon’s formula

 
251SNR

SNRlog10dB 24SNR
MHz 1MHz 3MHz 4

10dB




B

  Mbps88102511log10 6
2

6 C
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Example of Nyquist and 
Shannon Formulations

 How many signaling levels are 
required?

 Look out for: dB versus linear values, 
log2 versus log10
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Outline

 RF introduction
 Modulation and multiplexing
 Channel capacity
 Antennas and signal propagation

» How do antennas work
» Propagation properties of RF signals
» Modeling the channel

 Equalization and diversity
 Modulation and coding
 Spectrum access
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What is an Antenna?

 Conductor that carries an electrical signal 
and radiates an RF signal.

» The RF signal “is a copy of” the electrical signal in the 
conductor

 Also the inverse process: RF signals are 
“captured” by the antenna and create an 
electrical signal in the conductor.

» This signal can be interpreted (i.e. decoded)

 Efficiency of the antenna depends on its size, 
relative to the wavelength of the signal.

» E.g. quarter of a wavelength
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Types of Antennas

 Abstract view: antenna is a point source that 
radiates with the same power level in all 
directions – omni-directional or isotropic.

» Not common – shape of the conductor tends to create a 
specific radiation pattern

» Note that isotropic antennas are not very efficient!!
– Unless you have a very large number of receivers

 Common shape is a straight conductor.
» Creates a “disk” pattern, e.g. dipole

 Shaped antennas can be used to direct the 
energy in a certain direction.

» Well-known case: a parabolic antenna
» Pringles boxes are cheaper
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Antenna Types: Dipoles

 Simplest: half-wave dipole and quarter wave 
vertical antennas

» Very simple and very common
» Elements are quarter wavelength of frequency that is 

transmitted most efficiently
» Donut shape

 May other designs
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Multi-element Antennas

 Multi-element antennas have 
multiple, independently 
controlled conductors.

» Signal is the sum of the individual 
signals transmitted (or received) by 
each element

 Can electronically direct the RF 
signal by sending different 
versions of the signal to each 
element.

» For example, change the phase in 
two-element array.

 Covers a lot of different types of 
antennas.

» Number of elements, relative 
position of the elements, control 
over the signals, …
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Directional Antenna Properties

 dBi: antenna gain in dB relative to an 
isotropic antenna with the same power.

» Example: an 8 dBi Yagi antenna has a gain of a factor of 
6.3  (8 db = 10 log 6.3)
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Examples 2.4 GHz
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Summary

 The maximum capacity of a channel depends 
on the SINR

» How close you get to this maximum depends on the 
sophistication of the radios

» Distortion of the signal also plays a role – next lecture

 Antennas are responsible for transmitting and 
receiving the EM signals

» The “ideal” isotropic antenna is a point source that 
radiates energy in a sphere

» Practical antennas are directional in nature, as a result of 
the antenna shape or the use of multi-element antennas

» The antenna gain is expressed in dBi
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Outline

 RF introduction
 Modulation and multiplexing
 Channel capacity
 Antennas and signal propagation

» How do antennas work
» Propagation properties of RF signals
» Modeling the channel

 Modulation
 Diversity and coding
 OFDM

Typical 
Bad News

Good News
Story
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Propagation Modes

 Line-of-sight (LOS) propagation.
» Most common form of propagation
» Happens above ~ 30 MHz
» Subject to many forms of degradation (next set of slides)

 Obstacles can redirect the signal and create 
multiple copies that all reach the receiver

» Creates multi-path effects

 Refraction changes direction of the signal 
due to changes in density

» If the change in density is gradual, the signal bends!
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Impact of Obstacles

 Besides line of sight, signal 
can reach receiver in three 
“indirect” ways.

 Reflection: signal is 
reflected from a large 
object.

 Diffraction: signal is 
scattered by the edge of a 
large object – “bends”.

 Scattering: signal is 
scattered by an object that 
is small relative to the 
wavelength.

Peter A. Steenkiste 27

Refraction

 Speed of EM signals depends 
on the density of the material

» Vacuum: 3 x 108 m/sec
» Denser: slower

 Density is captured by 
refractive index

 Explains “bending” of signals 
in some environments

» E.g. sky wave propagation: Signal 
“bounces” off the ionosphere back to 
earth – can go very long distances

» But also local, small scale differences 
in the air density, temperature, etc.

denser
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Fresnel Zones

 Sequence of ellipsoids centered around the LOS path 
between a transmitter and receiver

 The zones identify areas in which obstacles will have 
different impact on the signal propagation

» Capture the constructive and destructive interference due to 
multipath caused by obstacles
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Fresnel Zones

 Zones create different phase 
differences between paths

» First zone: 0-90
» Second zone: 90-270
» Third zone: 270-450
» Etc.

 Odd zones create constructive 
interference, even zones 
destructive 

 Also want clear path in most of 
the first Fresnel zone, e.g. 60%

 The radius Fn of the nth Fresnel 
zone depends on the distances 
d1 and d2 to the transmitter and 
receiver and the wavelength

Ground
Buildings
Etc.
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Sketch of Calculation:
Difference in Path Length

 Difference in path length (a1 is small)
» D1 – d1  F * sin a1

 But for small a1 we also have
» sin a1 = tan a1 = F / d1

 So D1 – d1 = F2 / d1

d1

D1

d2

D2F
a1
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Sketch of Calculation
Fresnel Radios

 Given D1 – d1 = F2 / d1

 and (D1 + D2) – (d1 + d1) =  * n
 (D1 – d1) + (D2 – d2) = F2 / d1 + F2 / d2

 or

d1

D1

d2

D2F
a1
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Outline

 RF introduction
 Modulation and multiplexing
 Channel capacity
 Antennas and signal propagation

» How do antennas work
» Propagation properties of RF signals (the really sad part) 
» Modeling the channel

 Modulation
 Diversity and coding
 OFDM
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Propagation Degrades 
RF Signals

 Attenuation in free space: signal gets weaker 
as it travels over longer distances

» Radio signal spreads out – free space loss
» Refraction and absorption in the atmosphere

 Obstacles can weaken signal through 
absorption or reflection.

» Reflection redirects part of the signal

 Multi-path effects: multiple copies of the signal 
interfere with each other at the receiver

» Similar to an unplanned directional antenna

 Mobility: moving the radios or other objects 
changes how signal copies add up

» Node moves ½ wavelength -> big change in signal strength
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Free Space Loss

Loss = Pt / Pr = (4 d)2 / (Gr Gt 2) 
= (4 f d)2 / (Gr Gt c2) 

 Loss increases quickly with distance (d2).
 Need to consider the gain of the antennas at 

transmitter and receiver.
 Loss depends on frequency: higher loss with 

higher frequency.
» Can cause distortion of signal for wide-band signals
» Impacts transmission range in different spectrum bands
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Log Distance Path Loss Model

 Log-distance path los model captures free 
space attenuation plus additional absorption 
by of energy by obstacles:

Lossdb = L0 + 10 n log10(d/d0)
 Where L0 is the loss at distance d0 and n is 

the path loss distance component
 Value of n depends on the environment:

» 2 is free space model
» 2.2 office with soft partitions
» 3 office with hard partitions
» Higher if more and thicker obstacles
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Obstacles and Atmosphere

 Objects absorb energy as the signal passes 
through them

» Degree of absorption depends strongly the material
» Paper versus brick versus metal

 Absorption of energy in the atmosphere.
» Very serious at specific frequencies, e.g. water vapor (22 

GHz) and oxygen (60 GHz)

 Refraction refraction in the atmosphere
» Pockets of air can have different properties, e.g., 

humidity, temperature, …
» Redirects the signal in unpredictable ways
» Can reduce energy and increase path length
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Multipath Effect

 Receiver receives multiple 
copies of the signal, each 
following a different path

 Copies can either strengthen or 
weaken each other

» Depends on whether they are in our 
out of phase

 Changes of half a wavelength 
affect the outcome

» Short wavelengths, e.g. 2.4 Ghz -> 
12 cm, 900 MHz -> ~1 ft

 Small adjustments in location or 
orientation of the wireless 
devices can result in big 
changes in signal strength

+

=
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Example: 900 MHz
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Fading in the
Mobile Environment

 Fading: time variation of the received signal 
strength caused by changes in the 
transmission medium or paths.

» Rain, moving obstacles, moving sender/receiver, …

 Slow: changes the paths that make up the 
received signal – results in a change in the 
average power levels around which the fast 
fading takes place

» Mobility affects path length and the nature of obstacles

 Fast: changes in distance of about half a 
wavelength – results in big fluctuations in the 
instantaneous power
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Fading - Example

 Frequency of 910 MHz or wavelength of about 
33 cm 



Page 11

Peter A. Steenkiste 41

Frequency Selective versus 
Non-selective Fading

 Non-selective (flat) fading: fading affects all 
frequency components in the signal equally 

» There is only a single path, or a strongly dominating path, 
e.g., LOS

 Selective fading: 
frequency components 
experience different 
degrees of fading

» Multiple paths with path 
lengths that change 
independently

» Region of interest is the 
spectrum used by the 
channel
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Some Intuition 
for Selective Fading

 Assume three paths between a transmitter and receiver
 The outcome is determined by the differences in path length

» But expressed in wavelengths  outcome depends on frequency
 As transmitter, receivers or obstacles move, the path length 

differences change, i.e., there is fading
» But changes depend on wavelength, i.e. fading is frequency selective

 Significant concern for wide-band channels
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Example Fading Channel Models

 Ricean distribution: LOS path plus indirect paths
» Open space or small cells
» K = power in dominant path/power in scattered paths
» Speed of movement and min-speed

 Raleigh distribution: multiple indirect paths but no 
dominating or direct LOS path

» Lots of scattering, e.g. urban environment, in buildings
» Sum of uncorrelated Gaussian variables
» K = 0 is Raleigh fading

 Nakagami can be viewed as generalization: sum 
of independent Raleigh paths

» Clusters or reflectors resulting paths with Raleigh fading, but 
with different path lengths

 Many others!
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Inter-Symbol Interference

 Larger difference in path 
length can cause inter-
symbol interference (ISI)

» Different from effect of 
carrier phase differences

 Delays on the order of a 
symbol time result in 
overlap of the symbols

» Makes it very hard for the 
receiver to decode

» Corruption issue – not signal 
strength

» Significant concern for high 
bit rates (short symbol times)
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How Bad is the Problem?

 Assume binary encoding
» Times will increase with more complex symbol
» More complex encoding also requires higher SINR

 Some bit times and distances:

 Distances are much longer than for fast fading!
» Wavelength at 2.4 GHz: 14 cm

1 1 300
5 0.2 60

10 0.1 30
50 0.02 6

Rate 
Mbs

Time 
microsec

Distance 
meter
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Doppler Effect

 Movement by the transmitter, receiver, or 
objects in the environment can also create a 
doppler shift:

fm = (v / c) * f
 Results in distortion of signal

» Shift may be larger on some paths than on others
» Shift is also frequency dependent (minor)

 Effect only an issue at higher speeds:
» Speed of light: 3 * 108 m/s
» Speed of car: 105 m/h = 27.8 m/s
» Shift at 2.4 GHz is 222 Hz – increases with frequency
» Impact is that signal “spreads” in frequency domain
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Noise Sources

 Thermal noise: caused by agitation of the 
electrons

» Function of temperature
» Affects electronic devices and transmission media

 Intermodulation noise: result of mixing 
signals

» Appears at f1 + f2 and f1 – f2 (when is this useful?)
 Cross talk: picking up other signals

» E.g. from other source-destination pairs
 Impulse noise: irregular pulses of high 

amplitude and short duration
» Harder to deal with
» Interference from various RF transmitters
» Should be dealt with at protocol level

Fairly
Predictable
Can be 
planned for
or avoided

Noise
Floor
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Summary

 The wireless signal can be several degraded 
as it travels to the receiver:

 Attenuation increases with the distance to the 
receiver and as a result of obstacles

 Reflections create multi-path effects that 
cause distortion and inter-symbol 
interference

 Mobility causes slow and fast fading
» Fast fading is often frequency selective

 For higher speeds the Doppler effect can be a 
concern


