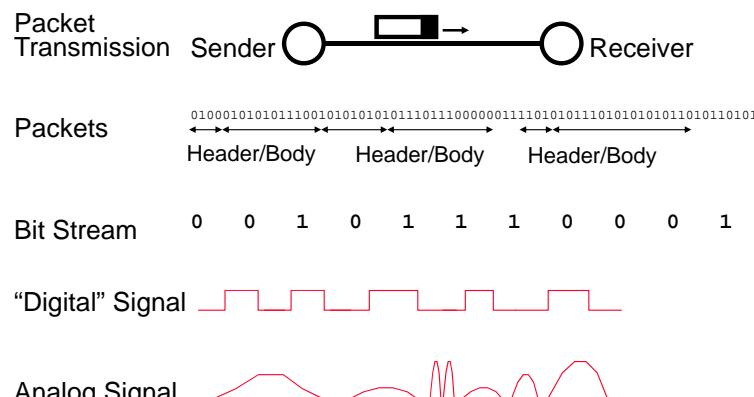


18-452/18-750
Wireless Networks and Applications
Lecture 3: Physical Layer
Signals, Modulation, Multiplexing

Peter Steenkiste
Carnegie Mellon University


Spring Semester 2017

<http://www.cs.cmu.edu/~prs/wirelessS17/>

Peter A. Steenkiste

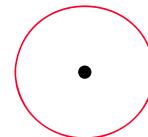
1

From Signals to Packets

Peter A. Steenkiste

3

Outline


- **RF introduction**
 - » A cartoon view
 - » Communication
 - » Time versus frequency view
- **Modulation and multiplexing**
- **Channel capacity**
- **Antennas and signal propagation**
- **Modulation**
- **Diversity and coding**
- **OFDM**

Peter A. Steenkiste

2

Cartoon View 1 - A Wave of Energy

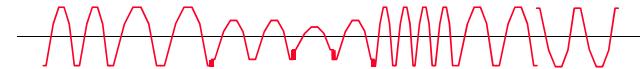
- Think of it as energy that radiates from an antenna and is picked up by another antenna.
 - » Helps explain properties such as attenuation
 - » Density of the energy reduces over time and with distance
- Useful when studying attenuation
 - » Receiving antennas catch less energy with distance
 - » Notion of cellular infrastructure

Peter A. Steenkiste

4

Cartoon View 2 – Rays of Energy

- Can also view it as a “ray” that propagates between two points
- Rays can be reflected etc.
 - » We can have connectivity without line of sight
- A channel can also include multiple “rays” that take different paths – “multi-path”
 - » Helps explain properties such as signal distortion, fast fading, ...



Peter A. Steenkiste

5

(Not so) Cartoon View 3 – Electro-magnetic Signal

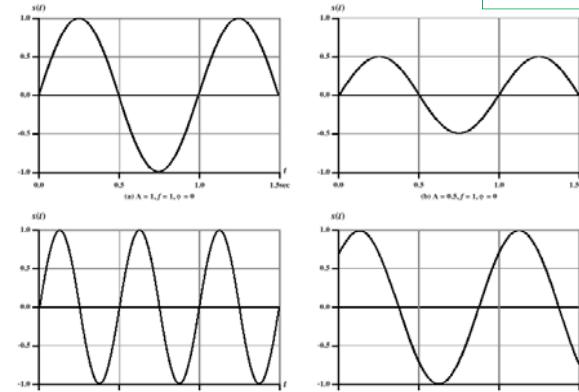
- Signal that propagates and has an amplitude and phase
 - » Can be represented as a complex number
- ... and that changes over time with a certain frequency
- Simple example is a sine wave
 - » Has an amplitude, phase, and frequency
 - » ... that can change over time

Peter A. Steenkiste

6

Relevance to
Networking?

Sine Wave Parameters

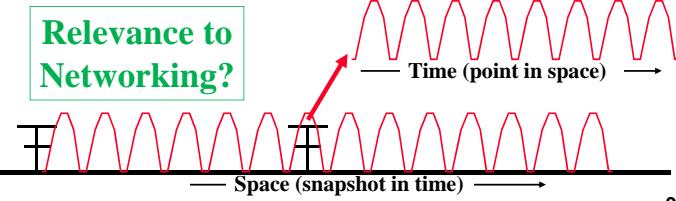

- General sine wave
 - » $s(t) = A \sin(2\pi ft + \phi)$
- Example on next slide shows the effect of varying each of the three parameters
 - $A = 1, f = 1 \text{ Hz}, \phi = 0$; thus $T = 1\text{s}$
 - Reduced peak amplitude; $A=0.5$
 - Increased frequency; $f = 2$, thus $T = 1/2$
 - Phase shift; $\phi = \pi/4$ radians (45 degrees)
- note: 2π radians = 360° = 1 period

Peter A. Steenkiste

7

Changing Parameters of Sine Wave

Relevance to
Networking?


Peter A.

$$s(t) = A \sin(2\pi ft + \phi)$$

8

Simple Example: Sine Wave

- RF signal travels at the speed of light
- Can look at a point in space: signal will change in time according to a sine function
 - » Signal at different points are (roughly) copies of each other
- Can take a snapshot in time: signal will “look” like a sine function in space

Peter A. Steenkiste

9

Key Idea of Wireless Communication

- The sender sends an EM signal and changes its properties over time
 - » Changes reflect a digital signal, e.g., binary or multi-valued signal
 - » Can change amplitude, phase, frequency, or a combination
- Receiver learns the digital signal by observing how the received signal changes
 - » Note that signal is no longer a simple sine wave or even a periodic signal

“The wireless telegraph is not difficult to understand.
The ordinary telegraph is like a very long cat.
You pull the tail in New York, and it meows in Los Angeles.
The wireless is exactly the same, only without the cat.”

Peter A. Steenkiste

10

Challenge

- Cats? This is very informal!
 - » Sender “changes signal” and receiver “observes changes”
- Wireless network designers need more precise information about the performance of wireless “links”
 - » Can the receiver always decode the signal?
 - » How many Kbit, Mbit, Gbit per second?
 - » Does the physical environment, distance, mobility, weather, season, the color of my shirt, etc. matter?
- We need a more formal way of reasoning about wireless communication:
Represent the signal in the frequency domain!

Peter A. Steenkiste

11

Outline

- RF introduction
 - » A cartoon view
 - » Communication
 - » Time versus frequency view
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

12

Challenge

- Cats, really? This is very informal!
 - » Sender “changes signal” and receiver “observes changes”
- Wireless network designers need more precise information about the performance of wireless “links”
 - » Can the receiver always decode the signal?
 - » How many Kbit, Mbit, Gbit per second?
 - » Does the physical environment, distance, mobility, weather, season, the color of my shirt, etc. matter?
- We need a more formal way of reasoning about wireless communication:
Represent the signal in the frequency domain!

Peter A. Steenkiste

13

Time Domain View: Periodic versus Aperiodic Signals

- **Periodic signal - analog or digital signal pattern that repeats over time**
 - » $s(t+T) = s(t)$
 - where T is the period of the signal
 - » Allows us to take a frequency view – important to understand wireless challenges and solutions
- **Aperiodic signal - analog or digital signal pattern that doesn't repeat over time**
 - » Hard to analyze
- **Can “make” an aperiodic signal periodic by taking a time slice T and repeating it**
 - » Often what we do implicitly

Peter A. Steenkiste

14

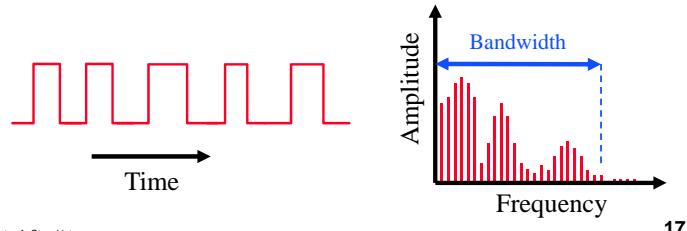
Key Parameters of (Periodic) Signal

- Peak amplitude (A) - maximum value or strength of the signal over time; typically measured in volts
- Frequency (f)
 - » Rate, in cycles per second, or Hertz (Hz) at which the signal repeats
- Period (T) - amount of time it takes for one repetition of the signal
 - » $T = 1/f$
- Phase (ϕ) - measure of the relative position in time within a single period of a signal
- Wavelength (λ) - distance occupied by a single cycle of the signal
 - » Or, the distance between two points of corresponding phase of two consecutive cycles

Peter A. Steenkiste

15

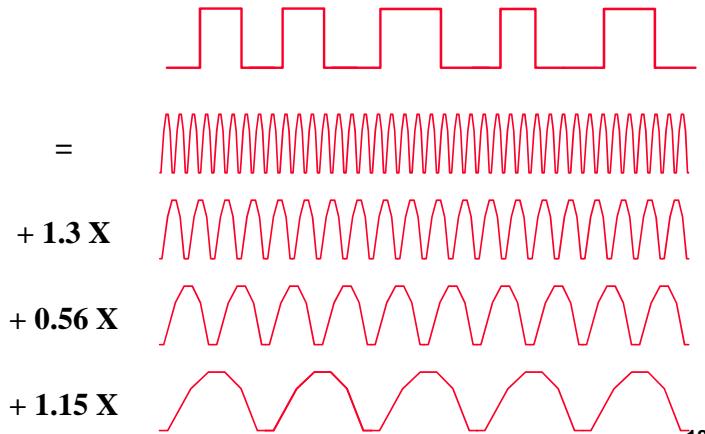
Key Property of Periodic EM Signals


- Any electromagnetic signal can be shown to consist of a collection of periodic analog signals (sine waves) at different amplitudes, frequencies, and phases
- The period of the total signal is equal to the period of the fundamental frequency
 - » All other frequencies are an integer multiple of the fundamental frequency
- There is a strong relationship between the “shape” of the signal in the time and frequency domain
 - » Discussed in more detail later

Peter A. Steenkiste

16

The Frequency Domain


- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
 - » Corresponds to energy at a certain frequency
- Every signal has an equivalent representation in the frequency domain.
 - » What frequencies are present and what is their strength (energy)
- We can translate between the two formats using a Fourier transform

Peter A. Steenkiste

17

Signal = Sum of Sine Waves

Peter A. Steenkiste

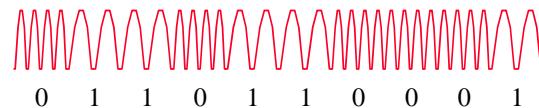
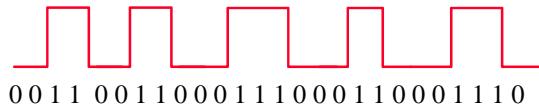
18

Outline

- RF introduction
- Modulation and multiplexing - review
 - » Analog versus digital signals
 - » Forms of modulation
 - » Baseband versus carrier modulation
 - » Multiplexing
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

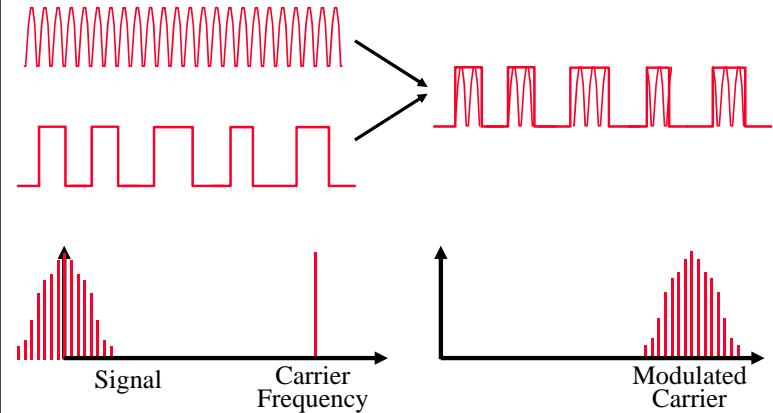
19



Signal Modulation

- Sender sends a "carrier" signal and changes it in a way that the receiver can recognize
 - » The carrier is sine wave with fixed amplitude and frequency
- Amplitude modulation (AM): change the strength of the carrier based on information
 - » High values -> stronger signal
- Frequency (FM) and phase modulation (PM): change the frequency or phase of the signal
 - » Frequency or Phase shift keying
- Digital versions are also called "shift keying"
 - » Amplitude (ASK), Frequency (FSK), Phase (PSK) Shift Keying
- Discussed in more detail in a later lecture

Peter A. Steenkiste

20


Amplitude and Frequency Modulation

Peter A. Steenkiste

21

Amplitude Carrier Modulation

Peter A. Steenkiste

22

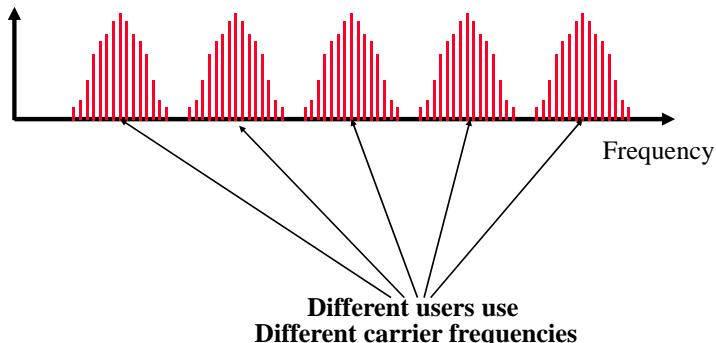
Analog and Digital Signals

- The signal that is used to modulate the carrier can be analog or digital
 - » Wired: Twisted pair, coaxial cable, fiber
 - » Wireless: Atmosphere or space propagation
- **Analog:** a continuously varying electromagnetic wave that may be propagated over a variety of media, depending on frequency
 - » Cannot recover from distortions, noise
 - » Can amplify the signal but also amplifies the noise
- **Digital:** discrete changes in the signal that correspond to a digital signal
 - » Can recover from noise and distortion:
 - » Regenerate signal along the path: demodulate + remodulate

Peter A. Steenkiste

23

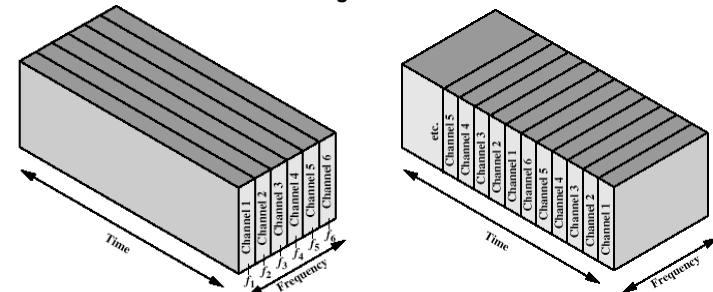
Multiplexing


- Capacity of the transmission medium usually exceeds the capacity required for a single signal
- **Multiplexing** - carrying multiple signals on a single medium
 - » More efficient use of transmission medium
- **A must for wireless – spectrum is huge!**
 - » Signals must differ in frequency (spectrum), time, or space

Peter A. Steenkiste

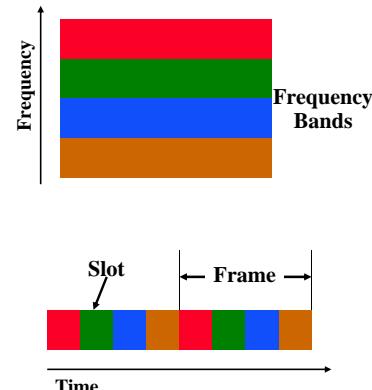
24

Multiple Users Can Share the Ether



Peter A. Steenkiste

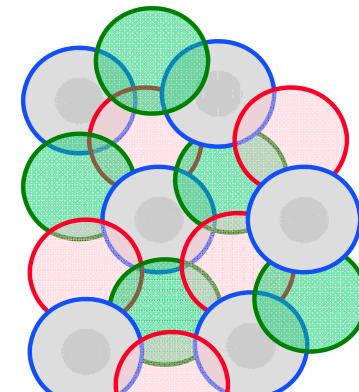
25


Multiplexing Techniques

- **Frequency-division multiplexing (FDM)**
 - » divide the capacity in the frequency domain
- **Time-division multiplexing (TDM)**
 - » Divide the capacity in the time domain
 - » Fixed or variable length time slices

Frequency versus Time-division Multiplexing

- With frequency-division multiplexing different users use different parts of the frequency spectrum.
 - » I.e. each user can send all the time at reduced rate
 - » Example: roommates
 - » Hardware is slightly more expensive and is less efficient use of spectrum
- With time-division multiplexing different users send at different times.
 - » I.e. each user can send at full speed some of the time
 - » Example: a time-share condo
 - » Drawback is that there is some transition time between slots; becomes more of an issue with longer propagation times
- The two solutions can be combined.



Peter A. Steenkiste

27

Frequency Reuse in Space

- Frequencies can be reused in space
 - » Distance must be large enough
 - » Example: radio stations
- Basis for “cellular” network architecture
- Set of “base stations” connected to the wired network support set of nearby clients
 - » Star topology in each circle
 - » Cell phones, 802.11, ...

Peter A. Steenkiste

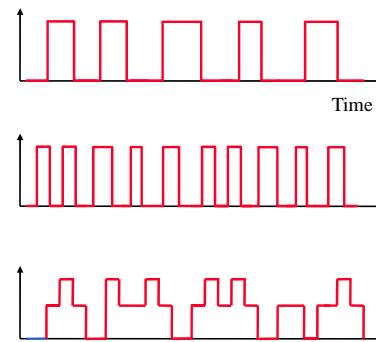
28

Outline

- RF introduction
- Modulation and multiplexing - review
- Channel capacity
- Antennas and signal propagation
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

29

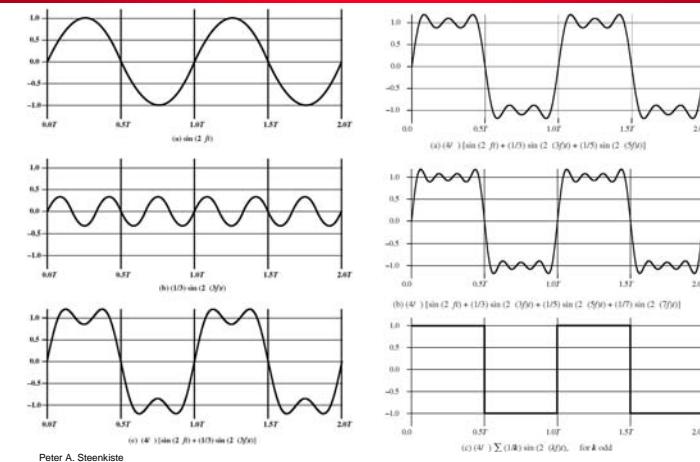

Relationship between Data Rate and Bandwidth

- The greater the (spectral) bandwidth, the higher the information-carrying capacity of the signal
- Intuition: if a signal can change faster, it can be modulated in a more detailed way and can carry more data
 - » E.g. more bits or higher fidelity music
- Extreme example: a signal that only changes once a second will not be able to carry a lot of bits or convey a very interesting TV channel
- Can we make this more precise?

Peter A. Steenkiste

30

Increasing the Bit Rate



- Increases the rate at which the signal changes.
 - » Proportionally increases all signals present, and thus the spectral bandwidth
- Increase the number of bits per change in the signal
 - » Adds detail to the signal, which also increases the spectral BW

Peter A. Steenkiste

31

Adding Detail to the Signal

Peter A. Steenkiste

32

So Why Don't we Always Send a Very High Bandwidth Signal?

- Channels have a limit on the type of signals they can carry effectively
- Wires only transmit signals in certain frequency ranges
 - Stronger attenuation and distortion outside of range
- Wireless radios are only allowed to use certain parts of the spectrum
 - The radios are optimized for that frequency band
- Distortion makes it hard for receiver to extract the information
 - A major challenge in wireless

Peter A. Steenkiste

33

Propagation Degrades RF Signals

- Attenuation in free space: signal gets weaker as it travels over longer distances
 - Radio signal spreads out – free space loss
 - Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
 - Reflection redirects part of the signal
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
 - Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up
 - Node moves $1/2$ wavelength -> big change in signal strength

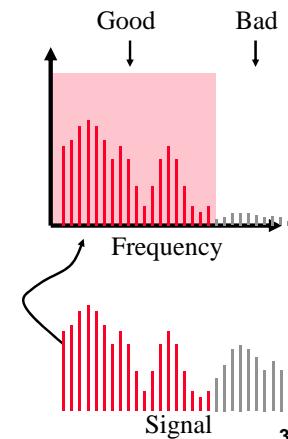
Peter A. Steenkiste

34

Propagation Degrades RF Signals

- Attenuation in free space: signal gets weaker as it travels over longer distances
 - Radio signal spreads out – free space loss
 - Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
 - Reflection redirects part of the signal
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
 - Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up
 - Node moves $1/2$ wavelength -> big change in signal strength

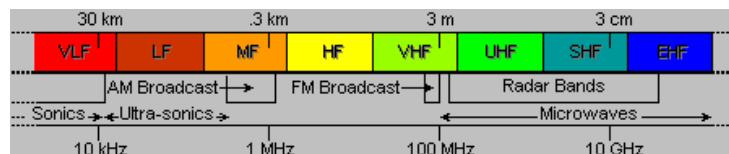
Peter A. Steenkiste


35

Transmission Channel Considerations

- Example: grey frequencies get attenuated significantly
- For wired networks, channel limits are an inherent property of the wires
 - Different types of fiber and copper have different properties
 - Capacity also depends on the radio and modulation used
 - Improves over time, even for same wire
- For wireless networks, limits are often imposed by policy
 - Can only use certain part of the spectrum
 - Radio uses filters to comply

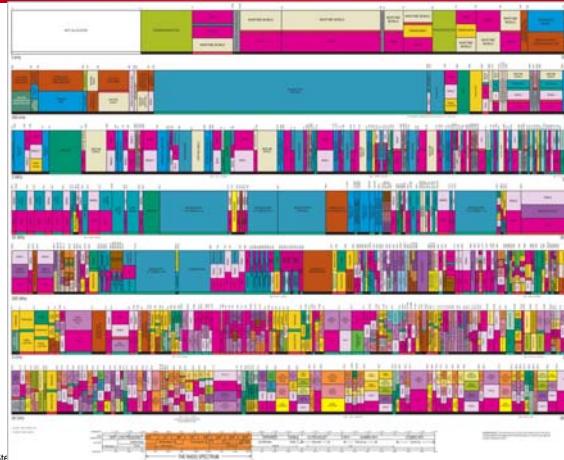
Peter A. Steenkiste


36

RF Introduction

- **RF = Radio Frequency**

- » Electromagnetic signal that propagates through “ether”
- » Ranges 3 KHz .. 300 GHz
- » Or 100 km .. 0.1 cm (wavelength)



- Travels at the speed of light
- Can take both a time and a frequency view

Peter A. Steenkiste

37

Spectrum Allocation in US

38

Channel Capacity

- Data rate - rate at which data can be communicated (bps)
 - » Channel Capacity – the maximum rate at which data can be transmitted over a given channel, under given conditions
- Bandwidth - the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise - average level of noise over the communications path
- Error rate - rate at which errors occur
 - » Error = transmit 1 and receive 0; transmit 0 and receive 1

Peter A. Steenkiste

39

The Nyquist Limit

- A noiseless channel of bandwidth B can at most transmit a binary signal at a capacity $2B$
 - » E.g. a 3000 Hz channel can transmit data at a rate of at most 6000 bits/second
 - » Assumes binary amplitude encoding
- For M levels: $C = 2B \log_2 M$
 - » M discrete signal levels
- More aggressive encoding can increase the actual channel bandwidth
 - » Example: modems
- Factors such as noise can reduce the capacity

Peter A. Steenkiste

40

Decibels

- A ratio between signal powers is expressed in decibels
$$\text{decibels (db)} = 10 \log_{10}(P_1 / P_2)$$
- Is used in many contexts:
 - » The loss of a wireless channel
 - » The gain of an amplifier
- Note that dB is a relative value.
- Can be made absolute by picking a reference point.
 - » Decibel-Watt – power relative to 1W
 - » Decibel-milliwatt – power relative to 1 milliwatt

Peter A. Steenkiste

41

Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that is present at a particular point in the transmission
 - » Typically measured at a receiver
- Signal-to-noise ratio (SNR, or S/N)
$$(SNR)_{\text{dB}} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$
- A high SNR means a high-quality signal
- Low SNR means that it may be hard to “extract” the signal from the noise
- SNR sets upper bound on achievable data rate

Peter A. Steenkiste

42

Shannon Capacity Formula

- Equation: $C = B \log_2(1 + \text{SNR})$
- Represents error free capacity
 - » It is possible to design a suitable signal code that will achieve error free transmission (you design the code)
- Result is based on many assumptions
 - » Formula assumes white noise (thermal noise)
 - » Impulse noise is not accounted for
 - » Various types of distortion are also not accounted for
- We can also use Shannon's theorem to calculate the noise that can be tolerated to achieve a certain rate through a channel

Peter A. Steenkiste

43

Shannon Discussion

- Bandwidth B and noise N are not independent
 - » N is the noise in the signal band, so it increases with the bandwidth
- Shannon does not provide the coding that will meet the limit, but the formula is still useful
- The performance gap between Shannon and a practical system can be roughly accounted for by a gap parameter
 - » Still subject to same assumptions
 - » Gap depends on error rate, coding, modulation, etc.

$$C = B \log_2(1 + \text{SNR}/\Gamma)$$

Peter A. Steenkiste

44

Example of Nyquist and Shannon Formulations

- Spectrum of a channel between 3 MHz and 4 MHz ; $\text{SNR}_{\text{dB}} = 24 \text{ dB}$

$$B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$$

$$\text{SNR}_{\text{dB}} = 24 \text{ dB} = 10 \log_{10}(\text{SNR})$$

$$\text{SNR} = 251$$

- Using Shannon's formula

$$C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8 \text{ Mbps}$$

Peter A. Steenkiste

45

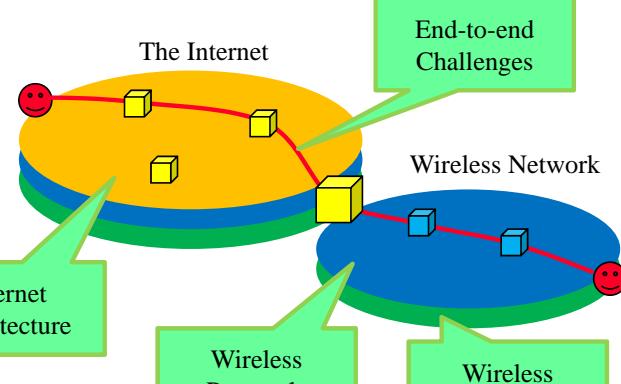
Example of Nyquist and Shannon Formulations

- How many signaling levels are required?

$$C = 2B \log_2 M$$

$$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$$

$$4 = \log_2 M$$


$$M = 16$$

- Look out for: dB versus linear values, \log_2 versus \log_{10}

Peter A. Steenkiste

46

Bird's Eye View

Peter A. Steenkiste

57