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Outline

 RF introduction
» A cartoon view
» Communication
» Time versus frequency view

 Modulation and multiplexing
 Channel capacity
 Antennas and signal propagation
 Modulation
 Diversity and coding
 OFDM
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From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream 0   0   1   0   1   1   1   0   0   0   1

Packets
010001010101110010101010101110111000000111101010111010101010110101101011

Header/Body Header/Body Header/Body

ReceiverSender
Packet
Transmission
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Cartoon View 1 –
A Wave of Energy

 Think of it as energy that radiates 
from an antenna and is picked up 
by another antenna.

» Helps explain properties such as 
attenuation

» Density of the energy reduces over time and 
with distance 

 Useful when studying attenuation
» Receiving antennas catch less energy with distance
» Notion of cellular infrastructure
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Cartoon View 2 –
Rays of Energy

 Can also view it as a “ray” that propagates 
between two points

 Rays can be reflected etc.
» We can have provide connectivity without line of sight

 A channel can also include multiple “rays” 
that take different paths – “multi-path”

» Helps explain properties such as signal distortion, fast 
fading, …
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(Not so) Cartoon View 3 –
Electro-magnetic Signal

 Signal that propagates and has 
an amplitude and phase

» Can be represented as a complex number

 … and that changes over time 
with a certain frequency

 Simple example is a sine wave
» Has an amplitude, phase, and frequency
» … that can change over time

Relevance to
Networking?
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Sine Wave Parameters

 General sine wave
» s(t ) = A sin(2ft + )

 Example on next slide shows the effect 
of varying each of the three parameters

a) A = 1, f = 1 Hz,  = 0; thus T = 1s
b) Reduced peak amplitude; A=0.5
c) Increased frequency; f = 2, thus T = ½
d) Phase shift;  = /4 radians (45 degrees) 

 note: 2 radians = 360° = 1 period
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Changing Parameters 
of Sine Wave Relevance to

Networking?
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Time (point in space)

Space (snapshot in time)

Simple Example: Sine Wave

 RF signal travels at the speed of light
 Can look at a point in space: signal will change 

in time according to a sine function
» Signal at different points are (roughly) copies of each other

 Can take a snapshot in time: signal will “look” 
like a sine function in space

Relevance to
Networking?
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Key Idea of Wireless 
Communication

 The sender sends an EM signal and changes 
its properties over time

» Changes reflect a digital signal, e.g., binary or multi-valued 
signal

» Can change amplitude, phase, frequency, or a combination

 Receiver learns the digital signal by observing 
how the received signal changes

» Note that signal is no longer a simple sine wave or even a 
periodic signal

“The wireless telegraph is not difficult to understand. 
The ordinary telegraph is like a very long cat. 

You pull the tail in New York, and it meows in Los Angeles. 
The wireless is exactly the same, only without the cat.”
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Challenge

 Cats?  This is very informal!
» Sender “changes signal” and receiver “observes changes”

 Wireless network designers need more precise 
information about the performance of wireless 
“links”

» Can the receiver always decode the signal?
» How many Kbit, Mbit, Gbit per second?
» Does the physical environment, distance, mobility, weather, 

season, the color of my shirt, etc. matter?

 We need a more formal way of reasoning about 
wireless communication:
Represent the signal in the frequency domain!
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Outline

 RF introduction
» A cartoon view
» Communication
» Time versus frequency view

 Modulation and multiplexing
 Channel capacity
 Antennas and signal propagation
 Modulation
 Diversity and coding
 OFDM
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Challenge

 Cats, really?  This is very informal!
» Sender “changes signal” and receiver “observes changes”

 Wireless network designers need more precise 
information about the performance of wireless 
“links”

» Can the receiver always decode the signal?
» How many Kbit, Mbit, Gbit per second?
» Does the physical environment, distance, mobility, weather, 

season, the color of my shirt, etc. matter?

 We need a more formal way of reasoning about 
wireless communication:
Represent the signal in the frequency domain!
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Time Domain View: 
Periodic versus Aperiodic Signals

 Periodic signal - analog or digital signal 
pattern that repeats over time

» s(t +T ) = s(t ) 
– where T is the period of the signal

» Allows us to take a frequency view – important to 
understand wireless challenges and solutions

 Aperiodic signal - analog or digital signal 
pattern that doesn't repeat over time

» Hard to analyze

 Can “make” an aperiodic signal periodic 
by taking a time slice T and repeating it

» Often what we do implicitly

Peter A. Steenkiste 15

Key Parameters of 
(Periodic) Signal

 Peak amplitude (A) - maximum value or strength of 
the signal over time; typically measured in volts

 Frequency (f )
» Rate, in cycles per second, or Hertz (Hz) at which the signal 

repeats
 Period (T ) - amount of time it takes for one 

repetition of the signal
» T = 1/f

 Phase () - measure of the relative position in time 
within a single period of a signal

 Wavelength ()  - distance occupied by a single 
cycle of the signal

» Or, the distance between two points of corresponding phase of 
two consecutive cycles
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Key Property of 
Periodic EM Signals

 Any electromagnetic signal can be shown to 
consist of a collection of periodic analog 
signals (sine waves) at different amplitudes, 
frequencies, and phases

 The period of the total signal is equal to the 
period of the fundamental frequency 

» All other frequencies are an integer multiple of the 
fundamental frequency

 There is a strong relationship between the 
“shape” of the signal in the time and frequency 
domain

» Discussed in more detail later
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The Frequency Domain

 A (periodic) signal can be viewed as a sum of sine 
waves of different strengths.

» Corresponds to energy at a certain frequency
 Every signal has an equivalent representation in the 

frequency domain.
» What frequencies are present and what is their strength (energy)

 We can translate between the two formats using a 
fourier transform

Time
Frequency

A
m

pl
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de Bandwidth
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Signal = Sum of Sine Waves

=

+ 1.3 X

+ 0.56 X

+ 1.15 X
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Outline

 RF introduction
 Modulation and multiplexing - review

» Analog versus digital signals
» Forms of modulation
» Baseband versus carrier modulation
» Multiplexing

 Channel capacity
 Antennas and signal propagation
 Modulation
 Diversity and coding
 OFDM
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Signal Modulation 

 Sender sends a “carrier” signal and changes it 
in a way that the receiver can recognize

» The carrier is sine wave with fixed amplitude and frequency
 Amplitude modulation (AM): change the 

strength of the carrier based on information
» High values -> stronger signal

 Frequency (FM) and phase modulation (PM): 
change the frequency or phase of the signal

» Frequency or Phase shift keying
 Digital versions are also called “shift keying”

» Amplitude (ASK), Frequency (FSK), Phase (PSK) Shift 
Keying

 Discussed in more detail in a later lecture
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Amplitude and Frequency
Modulation

0 0 1 1  0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0

0      1      1      0      1      1      0      0      0      1
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Amplitude Carrier Modulation

Signal Carrier
Frequency

Modulated
Carrier
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Analog and Digital Signals

 The signal that is used to modulate the carrier 
can be analog or digital

» Wired: Twisted pair, coaxial cable, fiber
» Wireless: Atmosphere or space propagation

 Analog: a continuously varying electromagnetic 
wave that may be propagated over a variety of 
media, depending on frequency

» Cannot recover from distortions, noise
» Can amplify the signal but also amplifies the noise

 Digital: discreet changes in the signal that 
correspond to a digital signal

» Can recover from noise and distortion: 
» Regenerate signal along the path: demodulate  + remodulate 
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Multiplexing

 Capacity of the transmission medium usually 
exceeds the capacity required for a single signal

 Multiplexing - carrying multiple signals on a 
single medium

» More efficient use of transmission medium

 A must for wireless – spectrum is huge!
» Signals must differ in frequency (spectrum), time, or space
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Multiple Users Can 
Share the Ether

Different users use 
Different carrier frequencies

Frequency
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Multiplexing Techniques

 Frequency-division multiplexing (FDM)
» divide the capacity in the frequency domain

 Time-division multiplexing (TDM)
» Divide the capacity in the time domain
» Fixed or variable length time slices
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Frequency versus 
Time-division Multiplexing

 With frequency-division 
multiplexing different users use 
different parts of the frequency 
spectrum.

» I.e. each user can send all the time 
at reduced rate

» Example: roommates 
» Hardware is slightly more expensive 

and is less efficient use of spectrum
 With time-division multiplexing 

different users send at different 
times.

» I.e. each user can sent at full speed 
some of the time

» Example: a time-share condo
» Drawback is that there is some 

transition time between slots; 
becomes more of an issue with 
longer propagation times

 The two solutions can be 
combined.

Fr
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y

Time

Frequency
Bands

Slot Frame
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Frequency Reuse in Space

 Frequencies can be 
reused in space

» Distance must be large 
enough

» Example: radio stations

 Basis for “cellular” 
network architecture

 Set of “base stations” 
connected to the wired 
network support set of 
nearby clients

» Star topology in each circle
» Cell phones, 802.11, …
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Outline

 RF introduction
 Modulation and multiplexing - review
 Channel capacity
 Antennas and signal propagation
 Modulation
 Diversity and coding
 OFDM
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Relationship between Data Rate 
and Bandwidth

 The greater the (spectral) bandwidth, the 
higher the information-carrying capacity of 
the signal

 Intuition: if a signal can change faster, it  can 
be modulated in a more detailed way and can 
carry more data 

» E.g. more bits or higher fidelity music
 Extreme example: a signal that only changes 

once a second will not be able to carry a lot of 
bits or convey a very interesting TV channel

 Can we make this more precise?
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Increasing the Bit Rate

 Increases the rate at which the 
signal changes.

» Proportionally increases all 
signals present, and thus the 
spectral bandwidth

 Increase the number of bits per 
change in the signal

» Adds detail to the signal, 
which also increases the 
spectral BW

Time

Frequency
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Adding Detail to the Signal
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So Why Don’t we Always Send a 
Very High Bandwidth Signal?

 Channels have a limit on the 
type of signals they can carry 
effectively

 Wires only transmit signals in 
certain frequency ranges
 Stronger attenuation and 

distortion outside of range
 Wireless radios are only 

allowed to use certain parts of 
the spectrum
 The radios are optimized for that 

frequency band
 Distortion makes it hard for 

receiver to extract the 
information
 A major challenge in wireless

T R
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Propagation Degrades 
RF Signals

 Attenuation in free space: signal gets weaker 
as it travels over longer distances

» Radio signal spreads out – free space loss
» Refraction and absorption in the atmosphere

 Obstacles can weaken signal through 
absorption or reflection.

» Reflection redirects part of the signal

 Multi-path effects: multiple copies of the signal 
interfere with each other at the receiver

» Similar to an unplanned directional antenna

 Mobility: moving the radios or other objects 
changes how signal copies add up

» Node moves ½ wavelength -> big change in signal strength
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Propagation Degrades 
RF Signals

 Attenuation in free space: signal gets weaker 
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Transmission Channel 
Considerations

 Example: grey frequencies get 
attenuated significantly

 For wired networks, channel 
limits are an inherent property of 
the wires

» Different types of fiber and copper 
have different properties

» Capacity also depends on the radio 
and modulation used

» Improves over time, even for same 
wire

 For wireless networks, limits are 
often imposed by policy

» Can only use certain part of the 
spectrum

» Radio uses filters to comply

Frequency

Good Bad

Signal
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RF Introduction

 RF = Radio Frequency
» Electromagnetic signal that propagates through “ether”
» Ranges 3 KHz .. 300 GHz
» Or 100 km .. 0.1 cm (wavelength)

 Travels at the speed of light
 Can take both a time and a frequency view
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Spectrum Allocation in US

38
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Channel Capacity

 Data rate - rate at which data can be 
communicated (bps)

» Channel Capacity – the maximum rate at which data can 
be transmitted over a given channel, under given 
conditions  

 Bandwidth - the bandwidth of the transmitted 
signal as constrained by the transmitter and 
the nature of the transmission medium (Hertz)

 Noise - average level of noise over the 
communications path

 Error rate - rate at which errors occur
» Error = transmit 1 and receive 0; transmit 0 and receive 1
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The Nyquist Limit

 A noiseless channel of bandwidth B can at 
most transmit a binary signal at a capacity 2B

» E.g. a 3000 Hz channel can transmit data at a rate of at 
most 6000 bits/second

» Assumes binary amplitude encoding

 For M levels: C = 2B log2 M
» M discrete signal levels

 More aggressive encoding can increase the 
actual channel bandwidth

» Example: modems

 Factors such as noise can reduce the capacity
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Decibels

 A ratio between signal powers is expressed in 
decibels

decibels (db) = 10log10(P1 / P2)
 Is used in many contexts:

» The loss of a wireless channel
» The gain of an amplifier

 Note that dB is a relative value.
 Can be made absolute by picking a reference 

point.
» Decibel-Watt – power relative to 1W
» Decibel-milliwatt – power relative to 1 milliwatt
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Signal-to-Noise Ratio

 Ratio of the power in a signal to the power 
contained in the noise that is present at a 
particular point in the transmission

» Typically measured at a receiver

 Signal-to-noise ratio (SNR, or S/N)

 A high SNR means a high-quality signal
 Low SNR means that it may be hard to 

“extract” the signal from the noise
 SNR sets upper bound on achievable data rate 

power noise
power signallog10)( 10dB SNR
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Shannon Capacity Formula

 Equation:

 Represents error free capacity
» It is possible to design a suitable signal code that will 

achieve error free transmission (you design the code)
 Result is based on many assumptions

» Formula assumes white noise (thermal noise)
» Impulse noise is not accounted for
» Various types of distortion are also not accounted for

 We can also use Shannon’s theorem to 
calculate the noise that can be tolerated to 
achieve a certain rate through a channel

 SNR1log2  BC
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Shannon Discussion

 Bandwidth B and noise N are not independent
» N is the noise in the signal band, so it increases with the 

bandwidth

 Shannon does not provide the coding that will 
meet the limit, but the formula is still useful

 The performance gap between Shannon and a 
practical system can be roughly accounted 
for by a gap parameter

» Still subject to same assumptions
» Gap depends on error rate, coding, modulation, etc.

  SNR/1log2BC
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Example of Nyquist and 
Shannon Formulations

 Spectrum of a channel between 3 MHz 
and 4 MHz ; SNRdB = 24 dB

 Using Shannon’s formula

 
251SNR

SNRlog10dB 24SNR
MHz 1MHz 3MHz 4

10dB




B

  Mbps88102511log10 6
2

6 C
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Example of Nyquist and 
Shannon Formulations

 How many signaling levels are 
required?

 Look out for: dB versus linear values, 
log2 versus log10

 

16
log4

log102108

log2

2

2
66

2








M
M

M

MBC
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Bird’s Eye View

The Internet

Wireless Network

Wireless 
Communication

Internet 
Architecture

End-to-end
Challenges

Wireless 
Protocols


