

18-452/18-750
Wireless Networks and Applications
Lecture 25: Localization

Peter Steenkiste
CS and ECE, Carnegie Mellon University

Spring Semester 2017
<http://www.cs.cmu.edu/~prs/wirelessS17/>

Peter A. Steenkiste, CMU

1

Outline

- Properties of localization procedures
- Approaches
 - » Proximity
 - » Trilateration and triangulation (GPS)
 - » Finger printing (RADAR)
 - » Hybrid systems

2

Properties of localization procedures

- Physical position vs data types
- Reference systems
- Processing: localized vs centralized
- Data quality
 - » Accuracy and precision
 - » Scale
- Deployment aspects
 - » Limitations
 - » Cost

➡ Very diverse systems – lots of research

Peter A. Steenkiste, CMU

3

Data types

- Many ways to measure location, e.g.
 - » GPS location of a mobile phone
 - » Area where an access point has sufficient reception
- Corresponding data types
 - » point locations in terms of coordinates:
physical or *geometric locations*
 - » extended region locations given by names:
symbolic locations

Peter A. Steenkiste, CMU

4

Spatial Information

- Sources of location information

- » Location of a device can be measured using positioning methods
- » Additional spatial information can be retrieved from a spatial information system

- Additional information

- » Geometric information
 - coordinate system and unit transformations
 - precision and accuracy of measurement
- » Region information
 - location hierarchies

Peter A. Steenkiste, CMU

5

Location-awareness

- Location model: data structure that organizes locations

- Location-based routing

- » symbolic location model
- » geometric location model
- » hybrid location model

Examples

- » symbolic location model:
address hierarchy
DH.Floor2.2105

- » geometric location model:
GPS coordinate
(12.3456°N, 123.456°E)

- » hybrid location model:
combination of address and
coordinate
DH.Floor2.2105.Seat(0,4)

Peter A. Steenkiste, CMU

6

Quality of Position Information

Positioning accuracy:

largest distance between an estimated position and the true position

Only pairs of precision and accuracy make sense

Precision:

the ratio with which a given accuracy is reached, averaged over many repeated attempts

Example:
average error of less than 20cm in 95% of cases

Peter A. Steenkiste, CMU

7

Approaches

- Proximity

- » estimate distance between two nodes

- Trilateration and triangulation

- » using elementary trigonometric properties: a triangle is completely determined,
 - if all two angles and a side length are known
 - if the lengths of all three sides are known
- » infer a 3d position from information about two triangles

- Fingerprinting (scene analysis)

- » using radio characteristics of a location as fingerprint to identify it

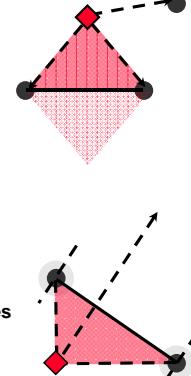
- Hybrid methods: combine multiple sources of information

Peter A. Steenkiste, CMU

8

Proximity and Distance

- **Binary nearness: using finite range of wireless communication and/or threshold**
 - » within range of a beacon signal from a source with known position
 - » yields region locations, e.g.: cell in cellular network
- **Distance measurement (ranging)**
 - » Received signal strength
 - » Time of flight (time of arrival)
 - » Time difference of arrival


Peter A. Steenkiste, CMU

9

Measuring Location: Trigonometry Basics

Triangles in a plane

- » **Lateration:** distance measurement to known reference points
 - a triangle is fully determined by the length of its sides
 - Time of Flight (e.g. GPS, Active Bat)
 - Attenuation (e.g. RSSI)
- » **Angulation:** measuring the angle with respect to two known reference points and a reference direction or a third point
 - a triangle is fully determined by two angles and one side as shown
 - Phased antenna arrays
 - aircraft navigation (VOR)

10

Mathematical Background

- Computing positions between three known positions (x_i, y_i) and an unknown position (x_u, y_u) given distances r_i btw (x_i, y_i) and (x_u, y_u)
- Yields three equations $(x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2$
- Linear equations by subtracting 3rd from 1st and 2nd: quadratic terms x_u^2 and y_u^2 disappear
 - » $2(x_3 - x_1)x_u + 2(y_3 - y_1)y_u = (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2)$
 - » $2(x_3 - x_2)x_u + 2(y_3 - y_2)y_u = (r_2^2 - r_3^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2)$
- In 3D: yields two points
- Positioning with imprecise information:
 - » Add redundancy: over determined solution
 - » Least squares estimates

Peter A. Steenkiste, CMU

11

GPS

- Radio-based navigation system developed by DoD
 - » Initial operation in 1993
 - » Fully operational in 1995
- System is called NAVSTAR
 - » NAVigation with Satellite Timing And Ranging
 - » Referred to as GPS
- Series of 24 satellites, in 6 orbital planes
- Works anywhere in the world, 24 hours a day, in all weather conditions and provides:
 - » Location or positional fix
 - » Velocity, direction of travel
 - » Accurate time

Peter A. Steenkiste, CMU www.fws.gov/southeast/gis/training_2k5/GPS_overview_APR_04.ppt 12

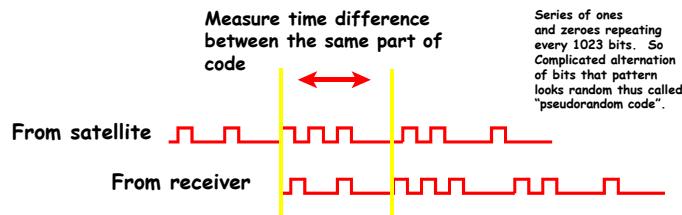
GPS involves 5 Basic Steps

- **Trilateration**
 - » Intersection of spheres
- **Satellite Ranging**
 - » Determining distance from satellite
- **Timing**
 - » Why consistent, accurate clocks are required
- **Positioning**
 - » Knowing where satellite is in space
- **Correction of errors**
 - » Correcting for ionospheric and tropospheric delays

Peter A. Steenkiste, CMU

13

How GPS works?


- Range from each satellite calculated
 - range = time delay \times speed of light
- Technique called **trilateration** is used to determine your position or “fix”
 - » Intersection of spheres
- At least 3 satellites required for 2D fix
- However, 4 satellites should always be used
 - » The 4th satellite used to compensate for inaccurate clock in GPS receivers
 - » Yields much better accuracy and provides 3D fix

Peter A. Steenkiste, CMU

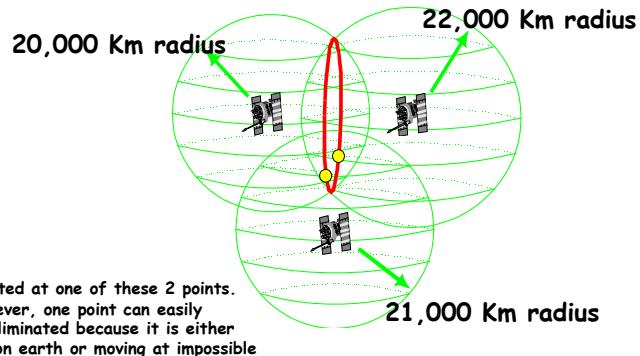
14

Determining Range

- Receiver and satellite use same code
- Synchronized code generation
- Compare incoming code with receiver generated code

Peter A. Steenkiste, CMU

15


Signal Structure

- Each satellite transmits its own unique code
- Two frequencies used
 - » L1 Carrier 1575.42 MHz
 - » L2 Carrier 1227.60 MHz
- Codes
 - » CA Code use L1 (civilian code)
 - » P (Y) Code use L1 & L2 (military code)

Peter A. Steenkiste, CMU

16

Three Satellite Ranges Known

Peter A. Steenkiste, CMU

17

Accurate Timing is the Key

- Satellites have very accurate atomic clocks
- Receivers have less accurate clocks
- Measurements made in nanoseconds
 - » 1 nanosecond = 1 billionth of a second
- $1/100^{\text{th}}$ of a second error could introduce error of 1,860 miles
- Discrepancy between satellite and receiver clocks must be resolved
- Fourth satellite is used to solve the 4 unknowns (X, Y, Z and receiver clock error)

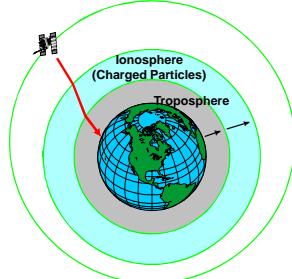
Peter A. Steenkiste, CMU

18

Satellite Positioning

- Also required in the equation to solve the 4 unknowns is the actual location of the satellite.
- Satellites are in relatively stable orbits and constantly monitored on the ground
- Satellite's position is broadcast in the "ephemeris" data streamed down to receiver

Peter A. Steenkiste, CMU


19

Sources of Errors

- Largest source is due to the atmosphere
 - » Atmospheric refraction
 - Charged particles
 - Water vapor
- Other sources:
 - » Geometry of satellite positions
 - » Multi-path errors
 - » Satellite clock errors
 - » SV position or "ephemeris" errors
 - » Quality of GPS receiver

Peter A. Steenkiste, CMU

20

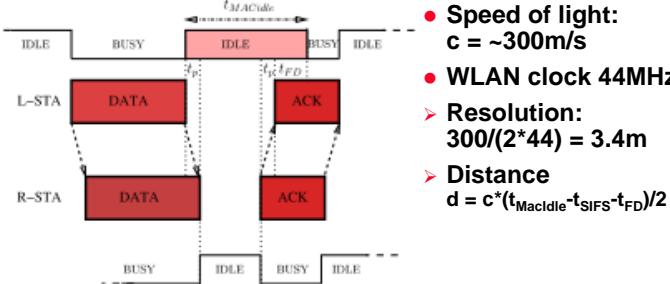
How about Indoors?

- We can use received WiFi signal strength (RSS) to measure distance to APs with known location!
- Does not work in practice: too many factors affects RSS: objects, people, ...
 - » Triangulation based on RSS tends to results tend to give large, unpredictable errors
- How about using time of arrival?
 - » E.g., based on sound, radar-like techniques, ...
 - » Works better, but it is still hard
 - » Can work well but often requires special infrastructure
 - » Reflections can also create inaccuracies: longer path!

Peter A. Steenkiste, CMU

21

CAESAR: Carrier Sense-based Ranging


- Question: can we use time of flight ranging using commodity WiFi hardware?
- Yes, but it gets a bit messy
 - » Need to include SNR measurement
- Local station determines location of (mobile) remote stations
- Design criteria
 - » Exploit standard 802.11 protocol implementations
 - » Real time results
 - » Low cost (low network usage, no additional hardware, minimal calibration)

Peter A. Steenkiste, CMU

22

CAESAR: Key Idea

- Time of flight from ACKs

Peter A. Steenkiste, CMU

23

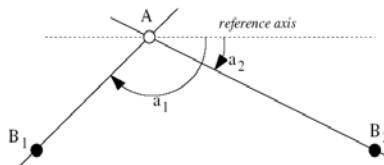
CAESAR: Adjustment to Noise

- Method depends on correct estimation of response time, which depends on the SNR
- Automatic gain control is used if
 - » Preferred region (PR): no AGC
 - » Strong signal detected (SSD): e.g. subtract 30dB from signal
 - » Weak signal detected (WSD): may need adjust signal to to bring it into PR (or signal is not detected)
- Proposed solution:
 - » Detect states SSD, WSD, and preferred range
 - » Use different values for Time for Frame Detection (t_FD)

Peter A. Steenkiste, CMU

24

Outline

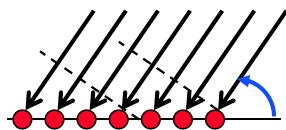

- Properties of localization procedures
- Approaches
 - » Proximity
 - » Trilateration and triangulation (GPS)
 - » Finger printing (RADAR)
 - » Hybrid systems

Peter A. Steenkiste, CMU

25

Angle of Arrival (AoA)

- A measures the direction of the incoming signal using a radio array.
- By using 2 anchors, A can determine its position
- Alternatively: the anchor measure the angle of A's signal and coordinate



Peter A. Steenkiste, CMU

26

Angle of Arrival Techniques

- Antenna arrays are increasingly popular
- They are usually used to steer the signal, but can be used to identify the angle at which it arrives
- Difference in arrival time can be used to measure angle

Peter A. Steenkiste, CMU

27

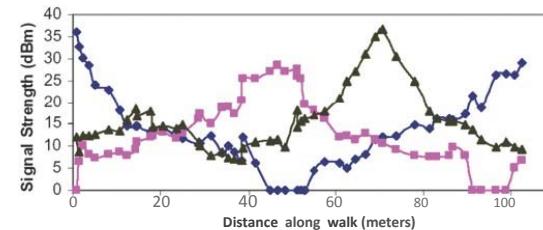
Outline

- Properties of localization procedures
- Approaches
 - » Proximity
 - » Trilateration and triangulation (GPS)
 - » Finger printing (RADAR)
 - » Hybrid systems

Peter A. Steenkiste, CMU

28

Location Fingerprinting

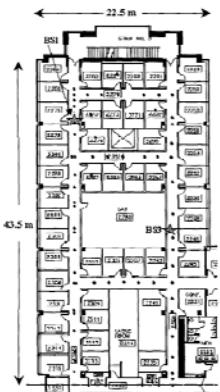

- Fingerprint Methods for Recognizing Locations
 - » Examples
 - Visual identification of places from photos
 - Recognition of horizon shapes
 - Measurement of signal strengths of nearby networks (e.g. RADAR)
 - » Method: computing the difference between a feature set extracted measurements with a feature database
 - » Advantages: passive observation only (protect privacy, prevent communication overhead)
 - » Disadvantage: access to feature database needed

Peter A. Steenkiste, CMU

29

RADAR: Key Idea

- RSS from multiple APs tends to be unique to a location



Peter A. Steenkiste, CMU

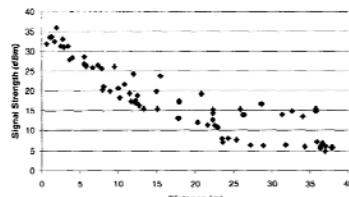
30

RADAR Approach

- Scenario: floor layout with three base stations (in the hallways)
- Empirical method
 - » offline phase: database is constructed
 - collect signal strength measurements from all three base stations at 70 distinct locations
 - store each of the 70 measurement triples together with the spatial location and orientation in a database
 - » online phase: position can be determined
 - measure the current signal strength from all three base stations
 - find the most similar triple(s) in the database
 - » Resolution 2.94m (50th percentile)

31

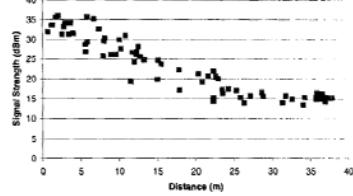
Peter A. Steenkiste, CMU


Model-Based Radio Map

- Model set-up phase has high cost
- Alternative use radio propagation model and floor plan (instead of measurements)
 - » Considered models
 - Rayleigh fading model: small-scale rapid amplitude fluctuation to model multi-path fading
 - Rician distribution model: like Rayleigh but with additional LoS component
 - Floor Attenuation Factor propagation model: large scale path loss with building models
 - Wall Attenuation Factor model: considers effects from walls between transmitter and receiver
 - » Resolution 4.3m (50th percentile)

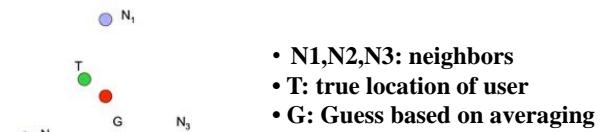
Peter A. Steenkiste, CMU

32


Effects of applying correction

signal strength
as a function of
distance

Peter A. Steenkiste, CMU


with correction
for walls

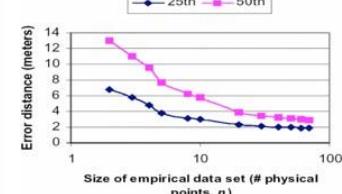
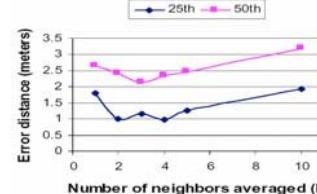
33

Localization

- Find nearest neighbor in single space (NNSS)
 - » Default metric is Euclidean distance
- Physical coordinates of NNSS → estimated user location
- Refinement: k-NNSS
 - » Average the coordinates of k nearest neighbors

Peter A. Steenkiste, CMU

34



Limits of Localization Using Signal Strength

- Measuring distance based on signal strength is an attractive idea for wireless sensor networks:
 - » RSS does not require additional hardware
 - » RSS declines with distance
 - » Many different promising methods proposed
- Experimental study:
 - » 802.11 technology with a range of methods and environments tested
 - » Median localization error of 10ft and 97th percentile of 30ft
- Fundamental limitations that require
 - » more complex environment models
 - » additional infrastructure

Peter A. Steenkiste, CMU

35

Results

Median error distance is 2.13 meters when averaging is done over 3 neighbors

Diminishing as the number of physical points mapped increased

36

Hybrid Technologies

- **Cell phones:** have many other sensors
 - » Accelerometer, compass, ...
- Can be used to estimate the user's walking speed, direction, ...
- This information can be combined with finger printing based techniques
- Especially useful if finger printing provides accurate location in specific points
 - » When entering a store, escalator, elevators
 - » Can use the other sensors starting with these well-known locations

Peter A. Steenkiste, CMU

37

Literature

- H. Karl and A. Willig (2005). Protocols and Architectures for Wireless Sensor Networks, Ch. 9 Localization and positioning. John Wiley & Sons.
- P. Bahl and V. N. Padmanabhan (2000). RADAR: An In-Building RF-based User Location and Tracking System. IEEE INFOCOM 2000, pp. 775-784.
- E. Elnahrawy et al. (2004). The limits of localization using signal strength: a comparative study. IEEE SECON 2004, pp. 406-414 .
- D. Giustiniano, and S. Mangold (2011). CAESAR: Carrier Sense-Based Ranging in Off-The-Shelf 802.11 Wireless LAN. ACM CoNEXT 2011.

Peter A. Steenkiste, CMU

38