

18-452/18-750
Wireless Networks and Applications
Lecture 12:
Mesh and Ad Hoc Networks

Peter Steenkiste

Spring Semester 2017

<http://www.cs.cmu.edu/~prs/wirelessS17/>

Peter A. Steenkiste

1

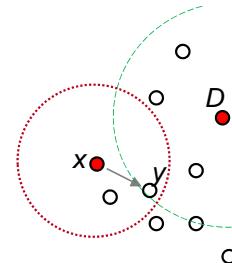
Greedy Perimeter Stateless Routing (GPSR)

- Use **positions** of neighboring nodes and packet destination to forward packets
 - No connectivity or global topology is assumed
 - no forwarding or path information anywhere!
 - Nodes are assumed to know their location
 - Need some address-to-location look up
- Two forwarding techniques is used
 - **Greedy forwarding**, if possible
 - **Perimeter forwarding**, otherwise

Peter A. Steenkiste

3

Overview

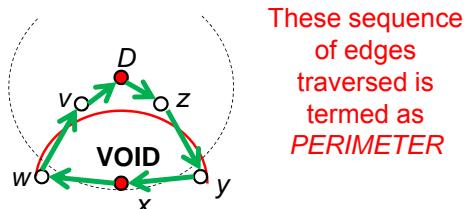

- Ad hoc networking concept
- Proactive versus reactive routing
- Proactive, table based routing: DSDV
- Reactive routing DSR
- Geographic routing: GPSR
- Other routing solutions
- Vehicular networks
- Wireless link metrics

Peter A. Steenkiste

2

GPSR - Greedy forwarding

- A sender/forwarder x chooses to forward to a neighbor y such that $\{d_{xy} + d_{yD}\}$ is minimum



Peter A. Steenkiste

4

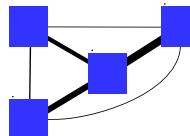
GPSR - Perimeter forwarding

- What happens if a node does not have a neighbor that is closer to the destination
- Right Hand Rule: you forward the packet to your first neighbor clockwise around yourself
 - traverse an interior region in *clockwise* edge order

Peter A. Steenkiste

5

Overview


- Ad hoc networking concept
- Proactive versus reactive routing
- Proactive, table based routing: DSDV
- Reactive routing DSR
- Geographic routing: GPSR
- Other routing solutions
- Wireless link metrics
- Vehicular networks

Peter A. Steenkiste

6

Link Metric

- Routing protocols for wired networks tend to use very simple link metrics
 - » Hop count (all links have cost of 1) or simple integers
 - » Performance of wired links is predictable!
- Wireless links can be very different and their performance can be unpredictable
 - » Hop count is a bad idea – why?
- Some links are so bad they are not really links
- Solution: Require a minimum PDR to qualify as a link
 - » PDR = Packet Delivery Rate
- Is that a sufficient solution?

Peter A. Steenkiste

7

Factors Influencing "Link Quality"

- Signal strength and quality: affects the bit rate used for packets
 - » Bit rate affects the transmit time of packets
- Number of retransmissions needed to deliver packets
 - » Retransmissions delay packets and use up more bandwidth
- Interference from nearby nodes
 - » Interference limits the transmission opportunities a node has, i.e., it can take longer to get channel access
 - » Some links may also face more hidden and exposed terminal problems

Peter A. Steenkiste

8

ETX: Minimize Number of Transmissions

- Measure each link's packet delivery probability with broadcast probes
 - » Must also measure the reverse link – ACKs must be received too for a transmission to be successful!
- The link ETX is the average number of transmissions needed to deliver a packet
 - Link ETX = $1 / P(\text{delivery}) = d_f * d_r$
- Route ETX = sum of link ETX
 - » Pessimistic: not all links interfere with each other
- ETX only considers some factors: bit rate, short probes under-estimate loss rate, traffic load, hidden terminals, ...

Peter A. Steenkiste

9

ETX: Sanity Checks

- ETX of perfect 1-hop path: 1
- ETX of 50% delivery 1-hop path: 2
- ETX of perfect 3-hop path: 3
- So, e.g., a 50% loss path is better than a perfect 3-hop path!
 - » A PDR threshold would probably fail here...

Peter A. Steenkiste

10

ETT: Expected Transmission Time

- The bit rate used for transmission can have a very big impact on performance
 - » E.g., 802.11a rates range from 6 to 54 Mbps
- ETT – expected *transmission time*
 - ETT = ETX / Link rate
 - = $1 / (P(\text{delivery}) * \text{Bit Rate})$
- Accounts for all major factors
 - » Traffic load and resulting competition for transmission time is still a factor
 - » Must update metric periodically

Peter A. Steenkiste

11

Overview

- Ad hoc networking concept
- Proactive versus reactive routing
- Proactive, table based routing: DSDV
- Reactive routing DSR
- Geographic routing: GPSR
- Other routing solutions
- Wireless link metrics
- Vehicular networks

Peter A. Steenkiste

12

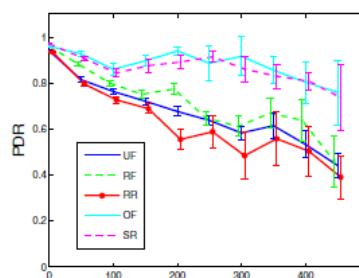
Vehicular "Ad Hoc" Networks

- Inter-vehicular communication
 - Emergency and military contexts
 - Everyday applications: Accident prevention, in-vehicle 'Internet', entertainment, ...
- Very different from other 'ad-hoc' networks
 - Rapidly changing topology due to road and traffic conditions
 - Non-homogenous distribution of nodes
 - Constrained mobility and signal reception (obstacles?)
 - Diverse and rapidly changing physical environments
- How different from DTNs?

Peter A. Steenkiste

13

Background - IEEE 802.11p Standard


- IEEE 802.11p-based Dedicated Short Range Communication standard for vehicular environments
- OFDM modulation as the IEEE 802.11a/g
 - » Except carrier frequency bandwidth (5.9 GHz band)
 - » Channel bandwidth (change 20 MHz to 10 MHz)
- OFDM is an effective wireless communication scheme for non-mobile environments
 - » Both the symbols and their sub-channels are orthogonal
 - Zero ISI and zero ICI
 - » But both properties might be affected by Doppler spread/shift and fading environment

Peter A. Steenkiste

14

The PDR Gray-zone Phenomenon

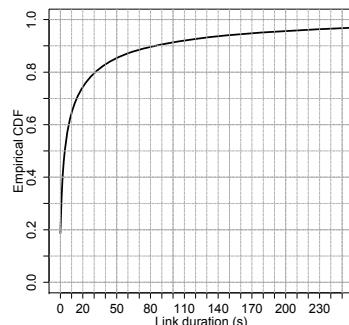
- "Intermediate reception" with links that are bad but usable prevails
 - » True at all distances but gets worse as distance increases
 - » There is no region with a perfect reception rage
- Open Field and Suburban Roads works best
 - » Not surprising
- Rural Roads is harshest environment
 - » Remote houses, trees, cross traffic, ..

(a) PDR vs. Separation Distance

Peter A. Steenkiste

15

Experiment Settings

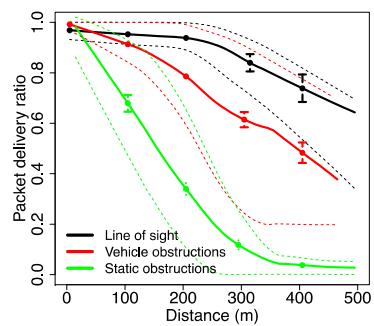

- Urban Freeway (UF)
 - » a large number of walls, tunnels and overhead bridges, as well as heavy vehicle traffic are present
- Rural Freeway (RF)
 - » The number of walls, tunnels and vehicle traffic are slightly less than its UF counterpart
- Rural Road (RR)
 - » The traffic was heavy on these routes because they lead toward a vehicle testing facility.
- Suburban Road (SR)
- controlled Open Field (OF)
 - » no buildings and other vehicles.

Peter A. Steenkiste

16

Dynamic Topology and Links

- Causes: high mobility, obstacles (multipath, shadowing)
- Effects: links have short life spans and partial connectivity


Peter A. Steenkiste

17

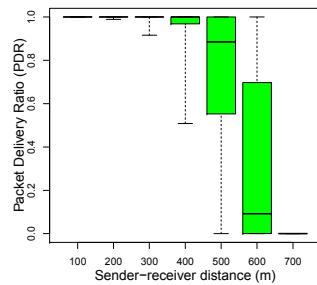
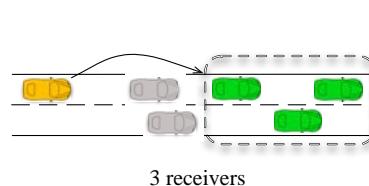
Spatial heterogeneity

- Transmission “range” is depends strongly on LOS conditions
- Line of sight blockages affect connectivity
 - » Terrain, buildings
 - » Other vehicles
- Node density varies according to location
- Pure geographic protocols assume connectivity uniformity

Peter A. Steenkiste

18

Idea

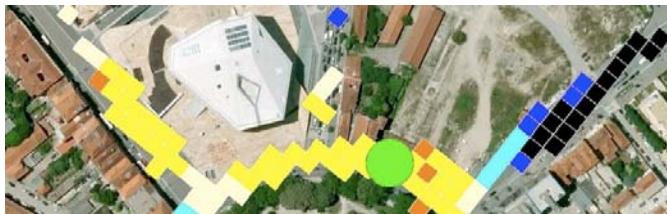


- Think of communication as connecting geographic areas instead of specific vehicles
- 1. Forwarding based on node diversity: Each area may have many antennas distributed across vehicles
- 2. Routing also uses spatial connectivity: topology graph is based on geographic areas instead of specific vehicles

Peter A. Steenkiste

19

Exploiting Node Diversity

- Different vehicles experience different channels
 - » Multipath diversity due to physical separation
 - » Shadowing diversity due to different line-of-sight conditions

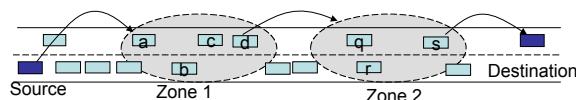

- DAZL – Density-Aware Zone-based forwarding

Peter A. Steenkiste

20

Spatial Connectivity Heuristic

- Collect spatially-indexed connectivity data
- Create map of delivery probability between areas

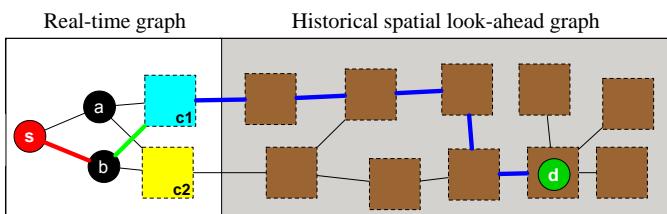

- LASP – Look-Ahead Spatial Protocol

Peter A. Steenkiste

21

DAZL Forwarding

- Forwarding only
- Packets addressed to a geographic forwarding zone
 - » Reliability from node diversity
- Forwarder coordination and prioritization
 - » Minimizes congestion, maximizes distance traveled

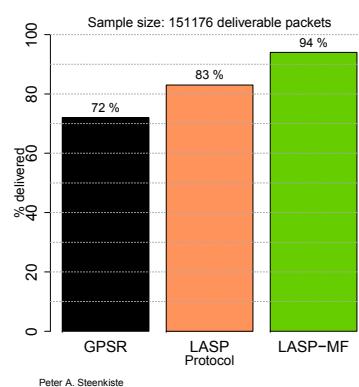


Peter A. Steenkiste

22

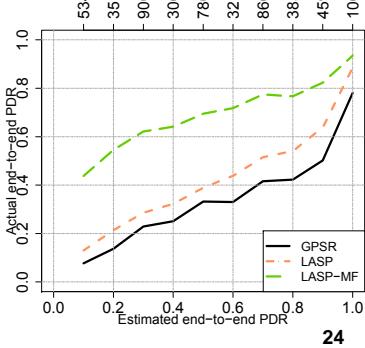
How about Routing? Use a Spatial Connectivity Graph

- Each node in the graph represents a geographic area
 - » Accounts for all vehicles in the area that can be used by zone-based forwarding algorithm
- Can use traditional routing protocols to find path
- Graph can use historical data or recent measurements



Peter A. Steenkiste

23


Experimental evaluation

PDR of deliverable packets

Peter A. Steenkiste

End-to-end PDR
vs
estimated 1-forwarder opt.

24

Summary

- Ad hoc networks face many challenges
 - » Bad links, interference, mobility, ...
 - » Makes routing very challenging
- Many proposals!
 - » Proactive routing: variants of “wired” routing protocols
 - » Reactive routing: only establish a path when it is needed
 - » Geographic routing: forwarding based on a node’s location – no need for access to network topology
 - » Many variants and extensions
- Vehicular networks are especially challenging
 - » High speed mobility, very unstable links and topologies
 - » Active area of research

Peter A. Steenkiste

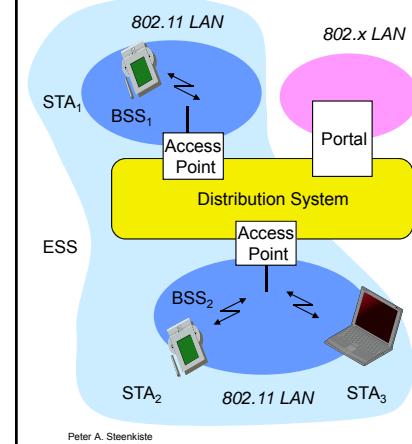
25

Outline

- Brief history
- 802 protocol overview
- Wireless LANs – 802.11 – overview
- 802.11 MAC, frame format, operations
- 802.11 management
- 802.11 security
- 802.11 power control
- 802.11*
- 802.11 QoS

Peter A. Steenkiste

26


Management and Control Services

- Association management
- Handoff
- Security: authentication and privacy
- Power management
- QoS

Peter A. Steenkiste

27

802.11: Infrastructure Reminder

Peter A. Steenkiste

- Station (STA)
 - » terminal with access mechanisms to the wireless medium and radio contact to the access point
- Access Point
 - » station integrated into the wireless LAN and the distribution system
- Basic Service Set (BSS)
 - » group of stations using the same AP
- Portal
 - » bridge to other (wired) networks
- Distribution System
 - » interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS

28

Service Set Identifier - SSID

- Mechanism used to segment wireless networks
 - » Multiple independent wireless networks can coexist in the same location
 - » Effectively the name of the wireless network
- Each AP is programmed with a SSID that corresponds to its network
- Client computer presents correct SSID to access AP
- Security Compromises
 - » AP can be configured to “broadcast” its SSID
 - » Broadcasting can be disabled to improve security
 - » SSID may be shared among users of the wireless segment

Peter A. Steenkiste

29

Association Management

- Stations must associate with an AP before they can use the wireless network
 - » AP must know about them so it can forward packets
 - » Often also must authenticate
- Association is initiated by the wireless host – involves multiple steps:
 1. Scanning: finding out what access points are available
 2. Selection: deciding what AP (or ESS) to use
 3. Association: protocol to “sign up” with AP – involves exchange of parameters
 4. Authentication: needed to gain access to secure APs – many options possible
- Disassociation: station or AP can terminate association

Peter A. Steenkiste

30

Association Management: Scanning

- Stations can detect AP based by scanning
- Passive Scanning: station simply listens for Beacon and gets info of the BSS
 - » Beacons are sent roughly 10 times per second
 - » Power is saved
- Active Scanning: station transmits Probe Request; elicits Probe Response from AP
 - » Saves time + is more thorough
 - » Wait for 10-20 msec for response
- Scanning all available channels can become very time consuming!
 - » Especially with passive scanning
 - » Cannot transmit and receive frames during most of that time – not a big problem during initial association

Peter A. Steenkiste

31

Association Management: Selecting an AP and Joining

- Selecting a BSS or ESS typically must involve the user
 - » What networks do you trust? Are you willing to pay?
 - » Can be done automatically based on stated user preferences (e.g. the “automatic” list in Windows)
- The wireless host selects the AP it will use in an ESS based on vendor-specific algorithm
 - » Uses the information from the scan
 - » Typically simply joins the AP with the strongest signal
- Associating with an AP
 - » Synchronization in Timestamp Field and frequency
 - » Adopt PHY parameters
 - » Other parameters: BSSID, WEP, Beacon Period, etc.

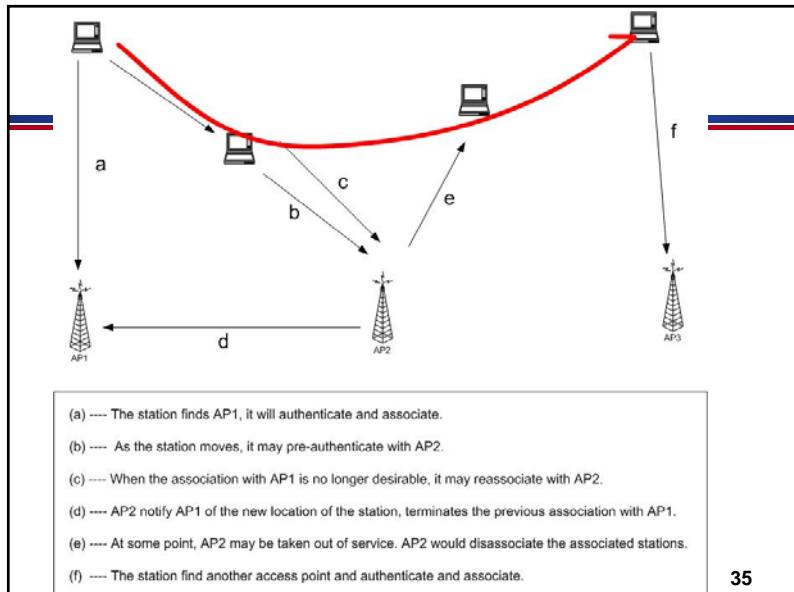
Peter A. Steenkiste

32

Association Management: Roaming

- **Reassociation:** association is transferred from active AP to a new target AP
 - » Supports mobility in the same ESS – layer 2 roaming
- **Reassociation is initiated by wireless host based on vendor specific algorithms**
 - » Implemented using an Association Request Frame that is sent to the new AP
 - » New AP accepts or rejects the request using an Association Response Frame
- **Coordination between APs is defined in 802.11f**
 - » Allows forwarding of frames in multi-vendor networks
 - » Inter-AP authentication and discovery typically coordinated using a RADIUS server
 - » “Fast roaming” support (802.11r) also streamlines authentication and QoS, e.g. for VoIP

Peter A. Steenkiste


33

Association Management: Reassociation Algorithms

- **Failure driven:** only try to reassociate after connection to current AP is lost
 - » Typically efficient for stationary clients since it is not common that the best AP changes during a session
 - » Mostly useful for nomadic clients
 - » Can be very disruptive for mobile devices
- **Proactive reassociation:** periodically try to find an AP with a stronger signal
 - » Tricky part: cannot communicate while scanning other channels
 - » Trick: user power save mode to “hold” messages
 - » Throughput during scanning is still affected though
 - Mostly affects latency sensitive applications

Peter A. Steenkiste

34

35