18-452/18-750 Wireless Networks and Applications

Lecture 1: Course Organization and Overview

Peter Steenkiste
Carnegie Mellon University

Spring Semester 2017

http://www.cs.cmu.edu/~prs/wirelessS17/

Goals of the Course

- Learn about the unique challenges in wireless networking
 - » Starting point is "regular" wired networks
- Gain an understanding of wireless technologies at the physical, MAC, and higher layers
 - » Physical layer essentials for computer systems types
 - » Focus is on the wireless protocol layer
 - » Implications for the higher layers of the protocol stack
- Get experience in working with wireless networks and devices
 - » Measurements of a wireless network
 - » Implementing wireless protocols, algorithms

Outline

- Goals and structure of the course
- Administrative stuff
- A bit of history
- Wireless technologies
- Building a network
- Please ask questions!

Peter A. Steenkiste. CMU

2

Lectures

- Introduction
 - » Why are wireless networks so interesting?
 - » A very quick overview of networking
- Physical layer concepts (~5)
 - » Focus on understanding the impact on higher layers
 - » Not an in-depth course on the communications field!
- LANs and WiFi (~6)
- Cellular networks (~3)
- Other technologies; PAN, RFID, NFC, (~5)
- GPS, localization, sensing (~3)
- Deployments: sensor networks, ad hoc, ...

Peter A. Steenkiste. CMU

Projects

- Projects are hands-on, team-based
- Measurement project to improve your understanding of wireless link properties
 - » Measure signal strength and other signal properties
 - » How do they relate to the physical context?
- Design, implement and evaluate some wireless protocol, algorithm or system
 - » Needs to deal with the unpredictable nature of wireless links and with mobility
 - » Multi-phase projects: start small and work your way up to larger networks
 - » Define your own project or set project

Peter A. Steenkiste. CMU

5

Graduate versus Undergraduate Course Numbers

- The course content is the same, but ..
- They are treated as separate courses:
- Different questions on the tests
 - » Some questions will be shared
- Different levels of expectation for projects and surveys
 - » E.g., original versus set project
- Final grades are assigned as separate pools
- The expectation is that students sign up for the course number that matches their status
 - » Talk to the instructor if you want to sign up for the "wrong" course number, e.g., IMB students

Potor A Stoonkisto CMII

7

Survey Presentations

- Present a survey of a particular wireless topic to the class
- Done in small teams
- Survey is based on research papers
 - » Pick from a list of topics or define your own topic
 - » Initial set of papers provided for the list
- Goals are:
 - » Learn about a specific topic in depth
 - » Develop critical thinking skills
 - » Improve your presentation skills

Peter A. Steenkiste. CMU

6

Prerequisites

- This course assumes you have taken an "Introduction to Computer Systems" course
 - » For example based on the O'Hallaron and Bryant book
- We will also build on basic networking and signals but the course includes introductory material on these topics
- Programming experience
 - » C/C++ programming for the project
- Course should be accessible to students with a broad range of backgrounds, but ...
- I don't know you, so please ask questions when something is not clear!

Peter A. Steenkiste. CMU

Grading

Grade distribution:

• Homeworks: 12%

Project 1: 8%

• Project 2: 25%

Survey: 10%Midterm: 15%

• Final: 30%

Peter A. Steenkiste. CMU

9

11

More Administrative Stuff

- Lectures are Mo/We 2:30-4:30
 - » But lectures will typically be 80 minutes
 - » May go longer, e.g., to make up time for travel
- Recitations are Fr 10:30-noon
 - » There will relatively few recitations, mostly to talk about the projects
 - » May use recitation slot for make up lectures
- This courses does not use blackboard
- Course admin is Ms. Malloy Gates 9006
 - » Pick up or drop off assignments
- Teaching assistants: TBD

Peter A. Steenkiste. CMU

Administrative Stuff

- Textbook" "Wireless Communication Networks and Systems", Corry Beard and William Stallings, Pearson, 2015
 - » Best fit for the course
- The course is not based on the book
 - » The book should be used to read about the topics covered in class, e.g., to clarify points or get more depth
 - » Book does not cover all the material in the book, but slides are detailed
- Web page is primary source for information
 - » Lecture material
 - » Office hours, contact information, ...
 - » Dates for quizzes, exams and project deadlines

Peter A. Steenkiste. CMU

10

Collaboration

- Traditional rules of collaboration apply
 - » http://dean.pku.edu.cn/notice/content.php?mc=61513&id=14 19312543
- You must complete individual assignments and tests by yourself
- You must collaborate with your partner in the team-based projects
- It is acceptable and encouraged to help fellow students with generic problems
 - » E.g. where to find documentation, use of tools, ..
- Provide proper credit when reusing material
 - » But check with instructor or TAs first

Peter A. Steenkiste. CMU

Course Material

- Most slides were prepared by the course instructor
- Some slides contain material from other sources
 - » Previous co-instructors have contributed slides
 - » Some figures are taken from the textbook
 - » Some lectures contain material from other sources

Peter A. Steenkiste. CMU

13

15

Some History...

- Tesla credited with first radio communication in 1893
- Wireless telegraph invented by Guglielmo Marconi in 1896
- First telegraphic signal traveled across the Atlantic ocean in 1901
- First "cell phone" concept developed in 1946
 - » Data communication introduced in ???
- GPS project started in 1973, complete in 1995
- WiFi technology developed in the mid-1990s

Outline

- Goals and structure of the course
- Administrative stuff
- A bit of history
- Wireless technologies
- Building a network

Peter A. Steenkiste. CMU

14

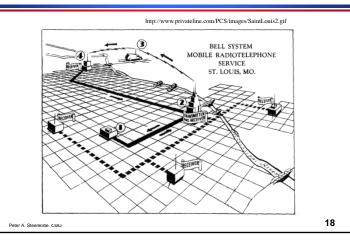
Scope of Wireless Covered in the Course

- Wireless in unlicensed band
 - » WiFi, Bluetooth, ...
- Cellular technologies in licensed spectrum
 - » Cover all generations with a focus on LTE
- Other wireless communication technologies
 - » RFID/NFC, low-power wireless, satellite, UWB, visible light communication, ...
- Localization and sensing
 - » GPS, Wifi for localization and sensing, ...
- Wireless deployments
 - » Infrastructure WiFi, ad hoc, sensor networks, vehicular,

Potor A Steenkiste CMII

Some topics covered in surveys

The origin of mobile phone


- America's mobile phone age started in 1946 with MTS
- First mobile phones bulky, expensive and hardly portable, let alone mobile
 - » Phones weighed 40 Kg~
- Operator assisted with 250 maximum users

Peter A. Steenkiste. CMU

17

The MTS network

Cell Phones Today

Some statistics for the US:

- Two hundred trillion text messages/day
 - » Average US teens sends 3339 texts per month
 - » 42% of teens can text while blind folded
 - » No 2 use of cellphones (what is No 1?)
- People use their phones for lots of things
 - » Take pictures (83%), play music (60%) and games (46%)
 - » Exchange videos (32%), access the web (27%) and social networks (23%)
 - » Only was of accessing the Internet for many people
- It is a big business
 - » Dollars spent on mobile devices: 42.8 M\$ (2010) versus 1.8 B\$ (2015)

Peter A. Steenkiste. CMU

19

Short History of WiFi

- In 1985, the FCC opened up the 900 Mhz, 2.4 GHz and 5.8 Ghz bands for unlicensed devices
- NCR and AT&T developed a WiFi predecessor called "Wavelan" starting in 1988
 - » NCR wanted to connect cashier registers wirelessly
 - » Originally used the 900 MHz band and ran at 1 Mbps
- Standardization started in early 90s and led to 802.11b (1999) and 802.11a (2000)
 - » Pre-standard products were available earlier
- Today –many standards!
 - » Working on 802.11aq rates up to several 100 Mps
 - » Very sophisticated technology: OFDM, MIMO, multi-user MIMO. ..

Peter A Steenkiste CMII

Early WiFi Interfaces

Wavelan at 900MHz 1 Mbps throughput

PCMCIA form factor make Wavelan more portable

21

Trends in Wireless

- Early days: specialized applications
 - » Broadcast TV and radio, voice calls, data, ..
 - » Holds for wireless and wired
- Today: flexible wireless platforms
 - » Phones, tables, and laptops all run similar applications
 - » Same trend as for wired networks: the internet took over
- Wireless is expanding in new domains
 - » Sensor networks, body area networks, ...
 - » Edge of the internet is increasingly wireless
 - » Many of these applications are unique to wireless
- Future?

22

Wireless Technologies 3 THz Ontical Infrared Wireless Communications satellite 300 GHz 30 GHz Communications WiMAX/LTE Terrestrial microwave Experimental 3 GHz Ultra-Communications satellite Cordless phone ZigBee 300 MHz Color FM radio Mobile 30 MHz White TV radio 3 MHz 1930 1940 1950 1960 1970 1980 1990 2000 23 Peter A. Steenkiste. CMU

Why so many? Diverse application Technologies have different requirements » Energy consumption » Signal penetration » Range » Frequency use » Bandwidth » Cost » Mobility » Market size » Cost Infrared » Age, integration » Cost Diverse deployments » Licensed versus unlicensed » Provisioned or not UWB Diverse deployments WiFi WiMAX/LTE ВТ Zigbee not 10m 100m 1Km 10km 100km 24 Range

Outline

- Goals and structure of the course
- Administrative stuff
- A bit of history
- Wireless technologies
- Building a network
 - » Designing a BIG system
 - » The OSI model
 - » Packet-based communication
 - » Challenges in Wireless Networking

Peter A Steenkiste CMU

25

The Internet is Big and Has Many, Many Pieces **Application** Application Router Software Operating System **Operating System** (many protocols) Links Computer Network Interface Protocol Software Router Hardware Computer Bridge HW/SW How do you design something this complex?

What Do We Definitely Need?

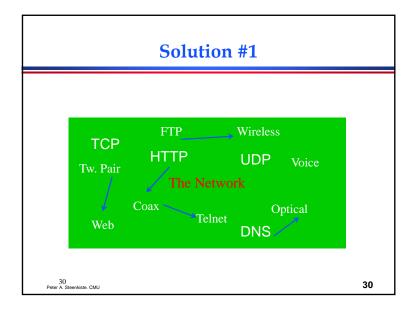
- We must have communication hardware and applications
 - » Applications make the network useful and fun

- Two "devices" must be able to sent data to each other
 - » When directly connected to each other
- The design must allow the network to grow very big and to always be available

- » We need to be able to expand, fix, and improve the network
- » While it is up and running: you cannot reboot the Internet

Peter A. Steenkiste. CMU

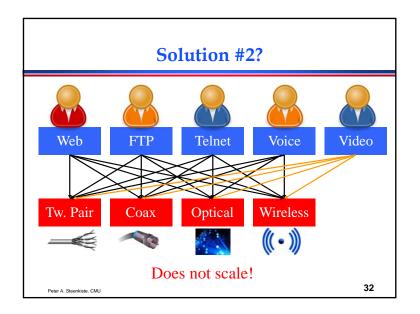
27

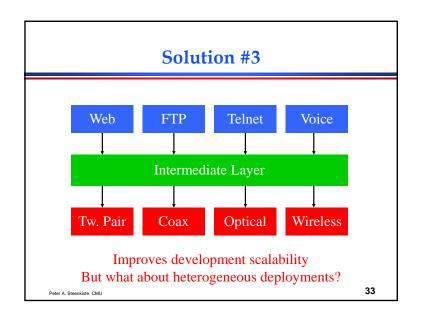

Protocol Enable Communication Friendly greeting An agreement between parties on how communication should take place. Protocols may have to define Muttered reply many aspects of the communication. Svntax: » Data encoding, language, etc. Get to Heinz Hall? Semantics: Error handling, termination, ordering of requests, etc. That way . Protocols at hardware. software, all levels! • Example: Buying airline ticket Thank you by typing. Syntax: English, ascii, lines delimited by "\n" Peter A. Steenkiste. CMU

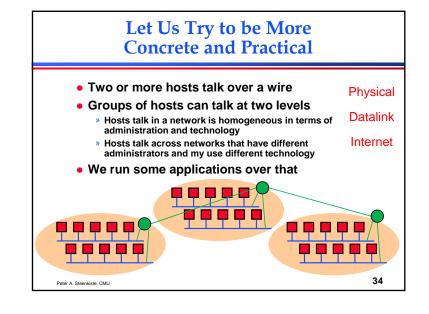
Do We Only Need Protocols?

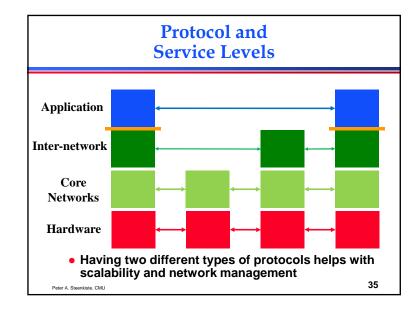
- . No: we need to build a (very big) system
- Need to also deal with significant complexity and scalability
 - » Many, many pieces of components
 - » Many parties involved in building and running the network
 - » Very long life time and the need to evolve
- The solution for dealing with complexity is modularity: break up the Internet "system" in a set of modules with well-defined interfaces
 - » Each module performs specific functions
 - » Can build a large complex system from modules implemented by many parties
- Let us start with multiple protocols ...

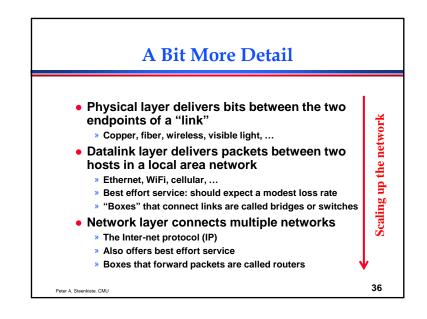
Peter A. Steenkiste. CMU


29




Need to More Add Structure


- Adding structure implies that you prevent people from doing arbitrary (≈ silly) things
 - » Can we organize the modules in a certain way?
- What modules do we definitely need in the Internet?
 - » Hardware modules that allow us to send bits around
 - » Applications that make the network useful for users
- Do we need additional modules "in between" the applications and the hardware?


Peter A. Steenkiste. CMU

