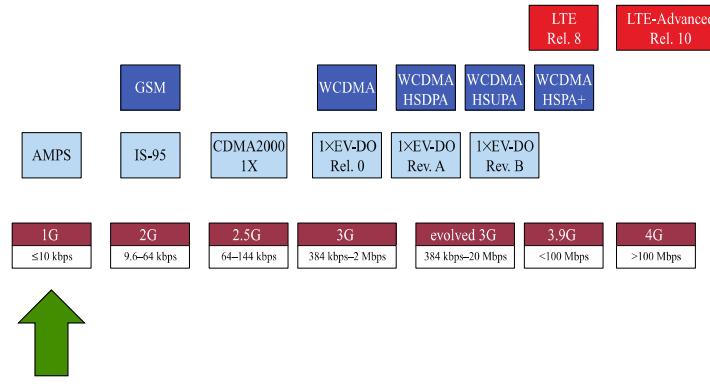


18-452/18-750
Wireless Networks and Applications
Lecture 18:
Cellular: 1G, 2G, and 3G


Peter Steenkiste

Spring Semester 2017
<http://www.cs.cmu.edu/~prs/wirelessS17>

Peter A. Steenkiste, CMU

1

Evolution of Cellular Wireless Systems

Peter A. Steenkiste, CMU

3

Outline

- 1G: AMPS
- 2G: GSM
- 2.5G: EDGE, CDMA
- 3G: WCDMA

Some slides based on material from
“Wireless Communication Networks and Systems”
© 2016 Pearson Higher Education, Inc.

Peter A. Steenkiste, CMU

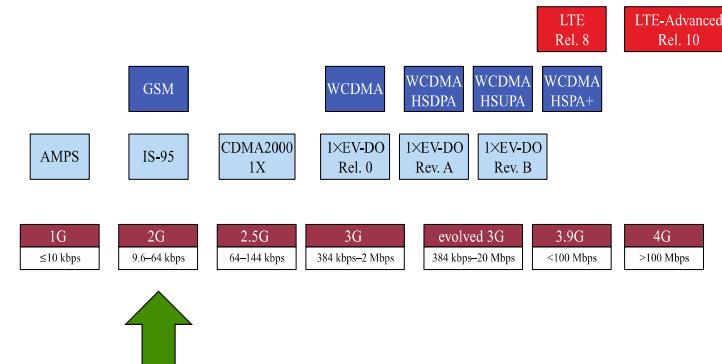
2

Advanced Mobile Phone Service (AMPS)

- In North America, two 25-MHz bands were allocated (DL: 869–894 MHz, UP: 824–849 MHz)
 - » Deployed since early 80's by two providers
- Channels are spaced by 30 KHz, allowing for 416 channels (21 control, 395 for voice calls)
 - » Control channels are full duplex data channels at 10 Kbps
 - » Includes preamble, word sync, and Digital Color Code identifying the base station
 - » Can send urgent control in data channels
- Conversations carried in analog using frequency modulation
 - » Effectively extends analog telephone over wireless
- Cell size = 2–20Km, frequency reuse is exploited

Peter A. Steenkiste, CMU

4


AMPS Operation

- When unit wakes up, it sends telephone and serial number to the Mobile Telephone Switching Office (MTSO) over control channel
 - Both stored in read-only memory
 - Used for billing purposes and to detect stolen phones
- Steps in placing a call:
 - User dials in a number – sent to the MTSO
 - MTSO verifies validity of service request
 - MTSO notifies user of channels to use for up/down link
 - MTSO sends ring signal to the called party
 - MTSO completes circuit when party picks up
 - When either party hangs up, MTSO releases circuit and wireless channels, and completes billing

Peter A. Steenkiste, CMU

5

Evolution of Cellular Wireless Systems

6

Differences Between First and Second Generation Systems

- Digital traffic channels – first-generation systems are almost purely analog; second-generation systems are digital
 - Using FDMA/TDMA or CDMA
- Encryption: second generation systems use encryption to prevent eavesdropping
- Error detection and correction: digital encoding allows for error detection and correction, giving clear voice reception
- Channel access – channels can be dynamically shared by a number of users
 - I.e., multiplexing in time and frequency

Peter A. Steenkiste, CMU

7

Motivation for Switch from Analog to Digital

- Higher quality
- Compression
- Encryption
- Error Detection and Correction
- Multiplexing channels by different users
 - I.e. TDMA

Peter A. Steenkiste, CMU

8

Global System for Mobile (GSM) - Background

- **GSM is a set of ETSI standards specifying the infrastructure for a digital cellular service**
 - » European Telecommunications Standards Institute
 - » Developed to provide a common second-generation technology for Europe
- **The standard was used in approx. 109 countries around the world including Europe, Japan and Australia**
- **Order 44 million subscribers**
 - » For 2G only – 2-3 Billion if you include all versions

Peter A. Steenkiste, CMU

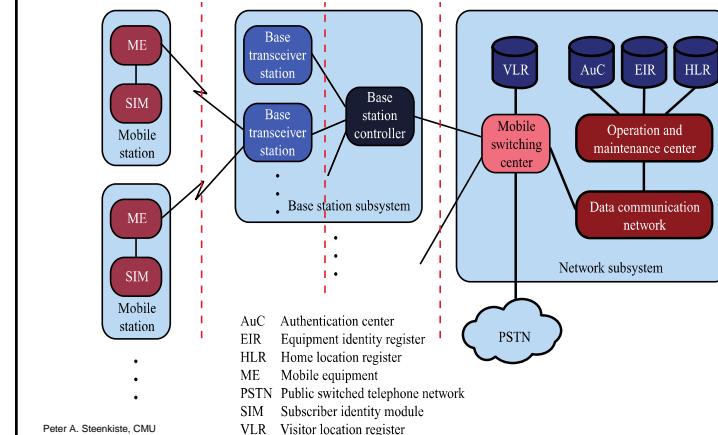
9

Design Requirements for GSM-like 2G Systems

- **Degree of multiplexing: at least 8**
 - » Not worth adding TDMA complexity otherwise
- **Maximum cell radius: ~35km**
 - » Needed for rural areas
- **Frequency: around 900 MHz**
- **Maximum speed: 250 km/hr – high-speed train**
- **Maximum coding delay: 20 msec**
 - » Do not want to add too much to network delay (voice!)
- **Maximum delay spread: ~10 μ sec**
- **Bandwidth: up to 200 KHz, ~25 kHz/channel**

Peter A. Steenkiste, CMU

10


GSM Features

- **Hybrid FDMA/TDMA approach**
- **Mobile station communicates across the air interface with base station in the same cell as mobile unit**
- **Mobile equipment (ME) – physical terminal, such as a telephone or PCS**
 - » ME includes radio transceiver, digital signal processors and subscriber identity module (SIM)
- **GSM subscriber units are generic until a SIM is inserted**
 - » SIMs roam since they are based on single standard
 - » Not necessarily the case for subscriber devices – may use different versions of the protocol

Peter A. Steenkiste, CMU

11

Global GSM System

12

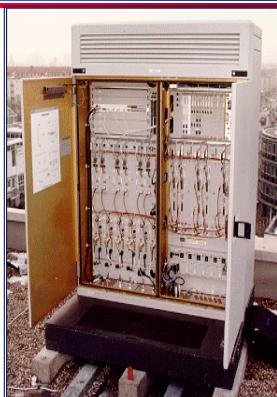
GSM SIM

- Users have a **Subscriber Identity Module (SIM)** – a smart card
- The user identity is associated with a mobile through the SIM card
- The SIM is portable and transferable
- All cryptographic algorithms (for authentication and data encryption) can be realized in the SIM
- May also store short messages, charging info, ..
- **SIM implications:**
 - » Equipment mobility and user mobility are not the same
 - » International roaming independent of the equipment and network technology

Peter A. Steenkiste, CMU

13

Base Station Subsystem (BSS)


- **BSS** consists of base station controller (BSC) and one or more base transceiver stations (BTS)
- **BSC** reserves radio frequencies, manages handoff of mobile unit from one cell to another within the BSS, and controls paging
- **Each BTS defines a single cell**
 - » Includes radio antenna, radio transceiver and a link to a base station controller (BSC)

Peter A. Steenkiste, CMU

14

Base Transceiver Station

- Radio transmission/reception management (modulation/demodulation, equalisation, interleaving ...)
- Physical layer management (TDMA transmission, SFH, coding, ciphering ...)
- Link layer management
- Received signal quality and power measurement

Peter A. Steenkiste, CMU

15

Base Station Controller

- **Interface between MSC and BTSs**
 - Forwarding of traffic
 - Coordination of and with BTSs
- **Radio resource management for the Base Station Subsystem**
 - Channel allocation
 - BTS measures processing
 - BTS and MS power control
 - Handover
 - ...

Peter A. Steenkiste, CMU

16

Network Subsystem (NS)

- NS provides link between cellular network and public switched telecommunications networks (PSTN)
 - » Controls handoffs between cells in different Base Station Subsystems
 - » Authenticates users and validates accounts
 - » Enables worldwide roaming of mobile users
- Central element of NS is the Mobile Switching Center (MSC)

Peter A. Steenkiste, CMU

17

Global GSM System

18

Mobile Switching Center

- Management of the communication between mobiles and the fixed network
 - The Gateway Mobile Switching Controller forms the gateway for calls to and from external networks
- MSC is also responsible for mobility management
 - Handover between Base Station Subsystems
 - Roaming across networks

Peter A. Steenkiste, CMU

Handover

- Executed by BSC (channels) and by MSC (routing)
- Initiated by base station:
 - » BS monitors the signal coming from the MT
 - » Low signal => HO! Need to do handover
- Mobile-terminal aided
 - » BS transmit beacon
 - » MT, hearing better beacon, request join
 - Sends the identity of the old BS to the new BS
 - » BS accepts the MT, calls are then forwarded
- Inter-system system handover is managed MSC
 - » With extra connections to the HLR/VLR

Peter A. Steenkiste, CMU

20

Mobile Switching Center (MSC) Databases

- Home location register (HLR) database – stores information about each subscriber that belongs to this MSC
- Visitor location register (VLR) database – maintains information about subscribers currently physically in the region
- Authentication center database (AuC) – used for authentication activities, holds encryption keys
- Equipment identity register database (EIR) – keeps track of the type of equipment that exists at the mobile station

Peter A. Steenkiste, CMU

21

Home Location Register

- One per “Public Land Mobile Network”
 - » Basically an operator
- Contains entries for every subscriber and every mobile ISDN number that is homed in the respective network
- Permanent subscriber data and relevant temporary information
- Current location of the mobile station
- All administrative activities of the subscriber happen here!

Peter A. Steenkiste, CMU

22

Visitor Location Register

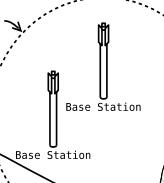
- One per MSC
- Stores data on all mobile stations which are currently in the administrative area of the respective MSC
- 1 VLR could be responsible for more than 1 MSC
- A roaming MS may be registered in a VLR of its home network or the foreign network depending on its location
- MS registers upon entering a LA. The MSC passes the identity of the MS and LAI to VLR

Peter A. Steenkiste, CMU

23

GSM Addressing Hierarchy

- Device
 - » IMEI (International Mobile Equipment Identifier)
- User
 - » IMSI (International Mobile Subscriber Identifier)
 - » MSISDN (Mobile Subscriber ISDN Number)
 - “Real phone number”
 - » MSRN (Mobile Station Roaming Number)
 - » TMSI (Temporary Mobile Subscriber Identity)
 - » LMSI (Local Mobile Subscriber Identity)
- Other
 - » LAI (Location Area Identity)
 - » CI (Cell Identity)


Peter A. Steenkiste, CMU

24

GSM Address Lookup ("registers")

Home Location Register
*Phone Number (MSISDN)
*(Current) VLR

Visitor Location Register
Subscriber Id (IMSI)
Roaming Number (MSRN)
Location Area Id (LAI)
Temporary Subsriber Id (TMSI)

- **Hard state: Current MSC/VLR, LAI**
 - » (Necessary to page phone, updated whenever mobile moves)
- **Soft-ish state:**
 - » MSRN, cell ID, TMSI

Note: Grossly simplified for your safety and sanity!

Peter A. Steenkiste, CMU

25

GSM Multiple Access

- Combination of FDMA and TDMA
- 890-915 MHz for uplink
- 935-960 MHz for downlink
- Each of those 25 MHz bands is sub divided into 124 single carrier channel of 200 KHz
 - » Each with a data rate of 270.833 kbps
- In each uplink/downlink band there is a 200 KHz guard band
- Each 200 KHz channel carries 8 TDMA channels

Peter A. Steenkiste, CMU

26

Additional GSM Features

- **GSM uses GMSK modulation**
 - » Gaussian Minimum Shift Keying
 - » Optimized version of Frequency Shift Keying (FM)
- **Slow frequency hopping: successive TDMA frames are sent over a different frequency**
 - » Switches every 4.615 msec
 - » Spreads out effect of multipath fading
 - » Also helps with co-channel interference
- **Delay equalization**
 - » Mobile stations sharing a frame can be at different distances from the base station
 - » Tail bits and guard bits provide margin to avoid overlap

Peter A. Steenkiste, CMU

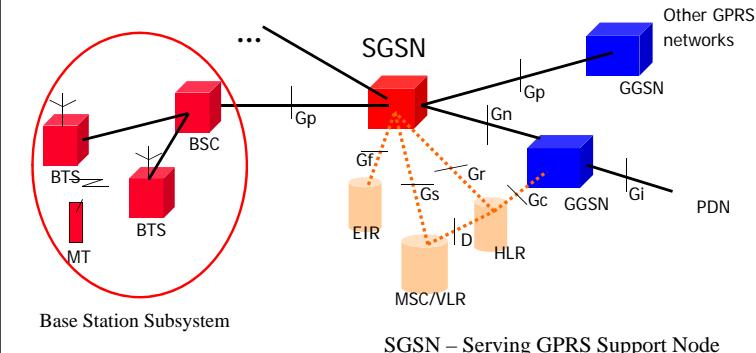
27

Generalized Packet Radio Service (GPRS)

- **Packet-oriented data transport service**
 - » Bursty, non-periodic traffic typical for Internet access
- **Uses a new architecture for data traffic**
 - » Allows users to open a persistent data connection
 - » Sending data traffic over a voice connection would add too much setup and teardown overhead
- **Uses the same frame structure as voice**
 - » 21.4 kbps from a 22.8 kbps gross data rate
 - » Can combine up to 8 GSM connections
 - Overall throughputs up to 171.2 kbps
 - » Enhanced Data Rates for GSM Evolution (EDGE) further increased rates using a more aggressive PHY

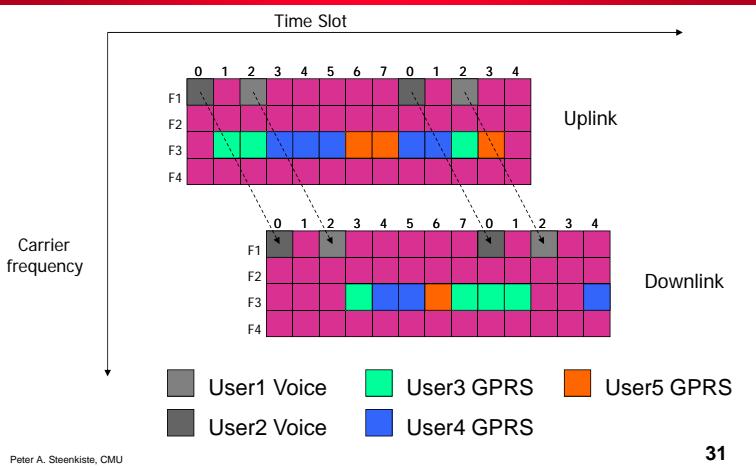
Peter A. Steenkiste, CMU

28

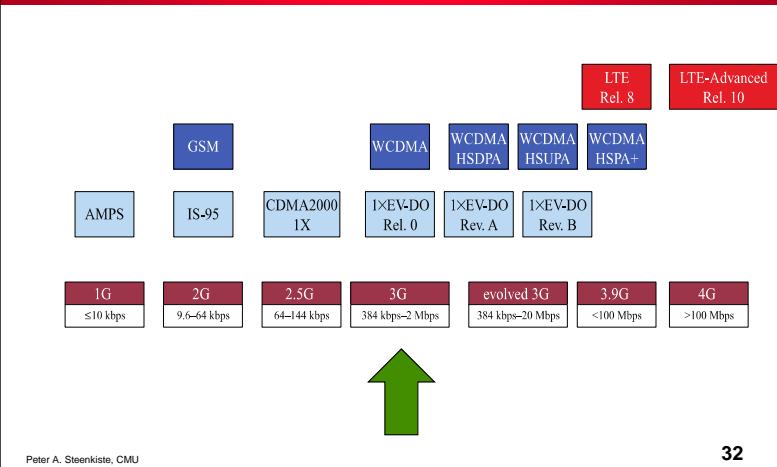

GPRS Architecture

- Network Subsystem includes several new entities:
 - Serving GPRS Support Node (SGSN): data transfer between Base Station and Network Subsystem
 - Gateway GPRS Support Node: connects to other GPRS networks and the packet data network (Internet)
 - New interfaces between the various entities
- Transmission plane
 - Data packets are transmitted by a tunnel mechanisms
- Control plane
 - Protocol for tunnel management: create, remove, ...
 - GPRS Tunnel Protocol
- Radio interface
 - Changes the logical channels and how they are managed

Peter A. Steenkiste, CMU


29

GPRS Architecture


30

GPRS Radio Interface

31

Evolution of Cellular Wireless Systems

32

Who is Who

- International Telecommunications Union (ITU) - agency of the United Nations responsible for:
 - » Assisting in the development and coordination of world-wide standards
 - » Coordinate shared use of the global spectrum
 - » Defined the International Mobile Telecommunications 2000 (IMT-2000) project for 3G telecommunications
- Third Generation Partnership Project (3GPP)
 - » A group of telecommunications associations that represent large markets world-wide
 - » Defined a group of 3G standards as part of the IMT-2000 framework in 1999
 - » Originally defined GSM, EDGE, and GPRS
 - » Later defined follow-on releases and also LTE (4G)

Peter A. Steenkiste, CMU

33

UMTS and WCDMA

- Part of a group of 3G standards defined as part of the IMT-2000 framework by 3GPP
- Universal Mobile Telecommunications System (UMTS)
 - » Successor of GSM
- W-CDMA is the air interface for UMTS
 - » Wide-band CDMA
 - » Originally 144 kbps to 2 Mbps, depending on mobility
- Basically same architecture as GSM
 - » Many GSM functions were carried over WCDMA
 - » But they changed all the names!

Peter A. Steenkiste, CMU

34

Later Releases Improved Performance

- High Speed Downlink Packet Access (HSDPA): 1.8 to 14.4 Mbps downlink
 - » Adaptive modulation and coding, hybrid ARQ, and fast scheduling
- High Speed Uplink Packet Access (HSUPA): Uplink rates up to 5.76 Mbps
- High Speed Packet Access Plus (HSPA+): Maximum data rates increased from 21 Mbps up to 336 Mbps
 - » 64 QAM, 2x2 and 4x4 MIMO, and dual or multi-carrier combinations
- Eventually led to the definition of LTE

Peter A. Steenkiste, CMU

35

Advantages of CDMA for Cellular systems

- Frequency diversity – frequency-dependent transmission impairments have less effect on signal
- Multipath resistance – chipping codes used for CDMA exhibit low cross correlation and low autocorrelation
- Privacy – privacy is inherent since spread spectrum is obtained by use of noise-like signals
- Graceful degradation – system only gradually degrades as more users access the system

Peter A. Steenkiste, CMU

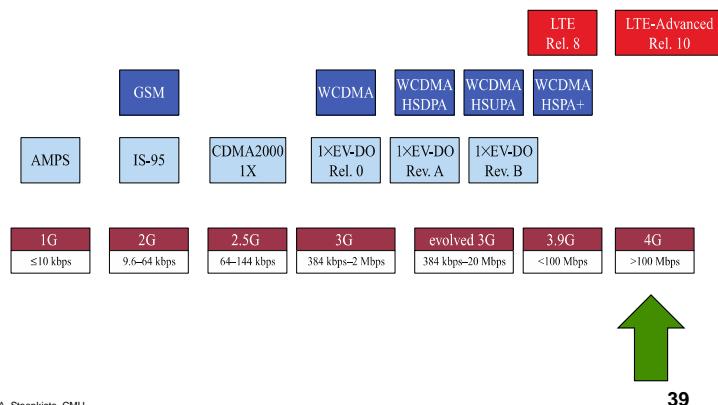
36

Mobile Wireless CDMA Soft Hand-off

- Soft Handoff – mobile station temporarily connected to more than one base station simultaneously
- Requires that the mobile acquire a new cell before it relinquishes the old
- More complex than hard handoff used in FDMA and TDMA schemes

Peter A. Steenkiste, CMU

37


Drawbacks of CDMA Cellular

- Self-jamming – arriving transmissions from multiple users not aligned on chip boundaries unless users are perfectly synchronized
- Near-far problem – signals closer to the receiver are received with less attenuation than signals farther away
 - » Need power control

Peter A. Steenkiste, CMU

38

Evolution of Cellular Wireless Systems

Peter A. Steenkiste, CMU

39