

**18-452/18-750**  
**Wireless Networks and Applications**  
**Lecture 9: Wireless LANs**  
**802.11 Wireless**

**Peter Steenkiste**

**Fall Semester 2018**

<http://www.cs.cmu.edu/~prs/wirelessF18/>

Peter A. Steenkiste, CMU

1

## Announcements

- Homework 1 should be out by tomorrow
- Project 1 by Friday
- Schedule:
  - » Thursday lecture from Silicon Valley campus
  - » Friday recitation from Pittsburgh campus
- Friday's lecture was not recorded
  - » Will schedule a makeup Q&A session

Peter A. Steenkiste, CMU

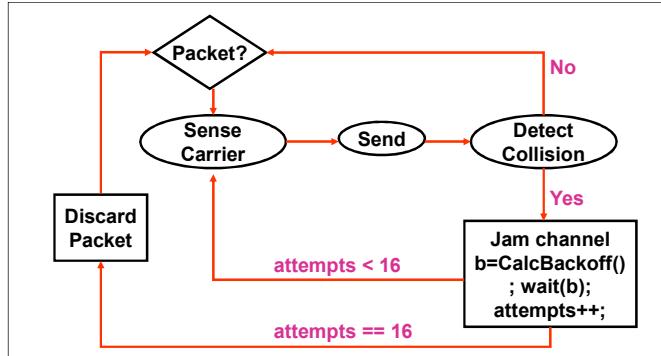
2

## Outline

- Data link fundamentals
  - » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
  - » Ethernet review
  - » How wireless differs
- 802.11 and 802.15 wireless standards

Peter A. Steenkiste, CMU

3


## "Regular" Ethernet CSMA/CD

- Multiple Access: multiple hosts are competing for access to the channel
- Carrier-Sense: make sure the channel is idle before sending – “listen before you send”
- Collision Detection: collisions are detected by listening on the medium and comparing the received and transmitted signals
- Collisions results in 1) aborting the colliding transmissions and 2) retransmission of the packets
- Exponential backoff is used to reduce the chance of repeat collisions
  - » Also effectively reduces congestion

Peter A. Steenkiste, CMU

4

## Carrier Sense Multiple Access/ Collision Detection (CSMA/CD)



Peter A. Steenkiste, CMU

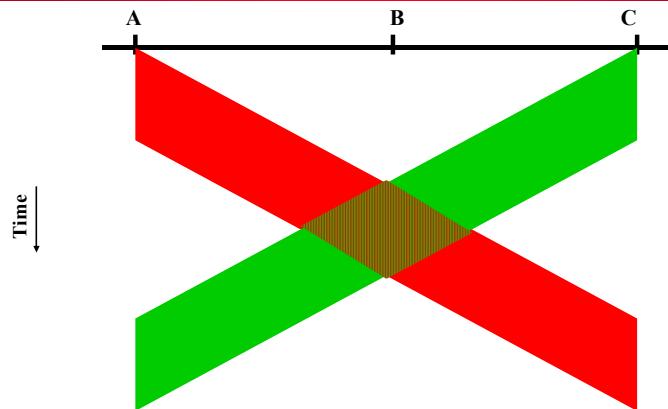
5

## Ethernet Backoff Calculation

- Challenge: how do we avoid that two nodes retransmit at the same time collision
- Exponentially increasing random delay
  - Infer "number" senders from # of collisions
  - More senders → increase wait time
- First collision: choose K from {0,1}; delay is K x 512 bit transmission times
- After second collision: choose K from {0,1,2,3}
- After ten or more collisions, choose K from {0,1,2,3,4,...,1023}

Peter A. Steenkiste, CMU

6


## How to Handle Transmission When Line is Sensed Busy

- p-persistent scheme:**
  - Transmit with probability p once the channel goes idle
  - Delay the transmission by  $t_{prop}$  with the probability  $(1-p)$
- 1-persistent scheme:**  $p = 1$ 
  - E.g. Ethernet
- nonpersistent scheme:**
  - Reschedule transmission for a later time based on a retransmission delay distribution (e.g. exp backoff)
  - Senses the channel at that time
  - Repeat the process
- When is each solution most appropriate?

Peter A. Steenkiste, CMU

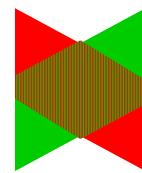
7

## Collisions



Peter A. Steenkiste, CMU

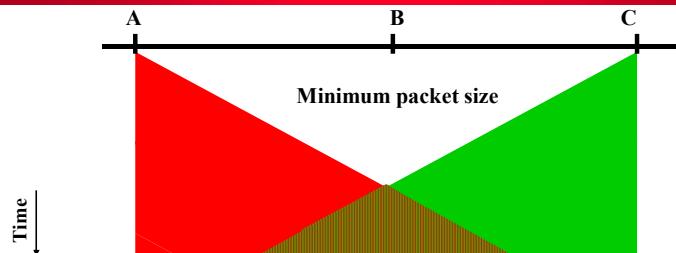
8


## Dealing with Collisions

- Collisions will happen: nodes can start to transmit “simultaneously”
  - » Vulnerability window depends on length of wire
- Recovery requires that both transmitters can detect the collision reliably
  - » Clearly a problem as shown on previous slide
- How can we guarantee detection?

Peter A. Steenkiste, CMU

9


## Detect Collisions



Limit length wire

10

## Detect Collisions



Peter A. Steenkiste, CMU

11

## So What about Wireless?

- Depends on many factors, but high level:
- Random access solutions are a good fit for data in the unlicensed spectrum
  - » Lower control complexity, especially for contention-based protocols (e.g., Ethernet)
  - » There may not always be a centralized controller
  - » May need to support multi-hop
  - » Also used in many unlicensed bands
- Cellular uses scheduled access
  - » Need to be able to guarantee performance
  - » Have control over spectrum – simplifies scheduled access
  - » More on this later in the course

Peter A. Steenkiste, CMU

12

## Summary

- Wireless uses the same types of protocols as wired networks
  - » But it is inherently a multiple access technology
- Some fundamental differences between wired and wireless may result in different design choices
  - » Higher error rates
  - » Must support variable bit rate communication
  - » Signal propagation and radios are different

Peter A. Steenkiste, CMU

13

## Outline

- Data link fundamentals
  - » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

Peter A. Steenkiste, CMU

14

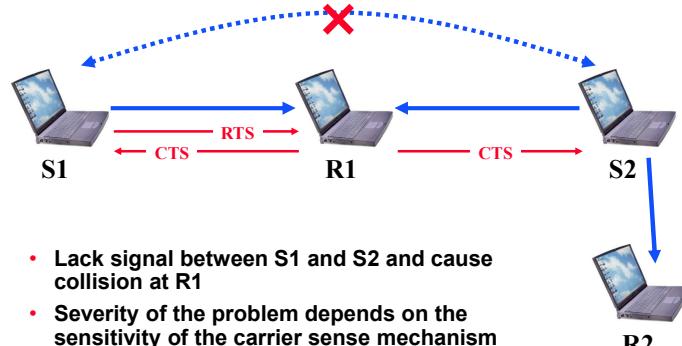
## Wireless Ethernet is a Good Idea, but ...

- Attenuation varies with media
  - » Also depends strongly on distance, frequency
- Wired media have exponential dependence
  - » Received power at  $d$  meters proportional to  $10^{-kd}$
  - » Attenuation in dB =  $k d$ , where  $k$  is dB/meter
- Wireless media has logarithmic dependence
  - » Received power at  $d$  meters proportional to  $d^{-n}$
  - » Attenuation in dB =  $n \log d$ , where  $n$  is path loss exponent;  $n=2$  in free space
  - » Signal level maintained for much longer distances?
- But we are ignoring the constants!
  - » Wireless attenuation at 2.4 GHz: 60-100 dB
  - » In practice numbers can be much lower for wired

Peter A. Steenkiste, CMU


15

## Implications for Wireless Ethernet


- Collision detection is not practical
  - » Ratio of transmitted signal power to received power is too high at the transmitter
  - » Transmitter cannot detect competing transmitters (is deaf while transmitting)
  - » So how do you detect collisions?
- Not all nodes can hear each other
  - » Ethernet nodes can hear each other by design
  - » “Listen before you talk” often fails
  - » Hidden terminals, exposed terminals,
  - » Capture effects
- Made worse by fading
  - » Changes over time!

Peter A. Steenkiste, CMU

16



## Hidden Terminal Problem

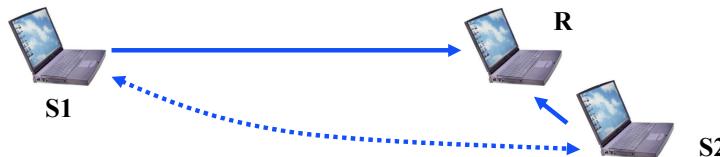


- Lack signal between S1 and S2 and cause collision at R1
- Severity of the problem depends on the sensitivity of the carrier sense mechanism
  - » Clear Channel Assessment (CCA) threshold

Peter A. Steenkiste, CMU

17

## Exposed Terminal Problem

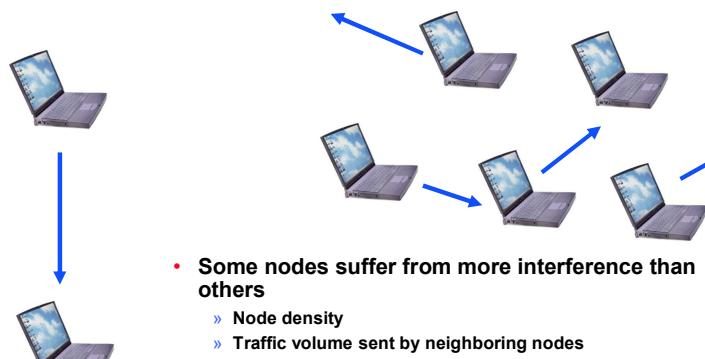



- Carrier sense prevents two senders from sending simultaneously although they do not reach each other's receiver
- Severity again depends on CCA threshold
  - » Higher CCA reduces occurrence of exposed terminals, but can create hidden terminal scenarios

Peter A. Steenkiste, CMU

18

## Capture Effect




- Sender S2 will almost always “win” if there is a collision at receiver R.
- Can lead to extreme unfairness and even starvation.
- Solution is power control
  - » Very difficult to manage in a non-provisioned environment!

Peter A. Steenkiste, CMU

19

## Wireless Packet Networking Problems

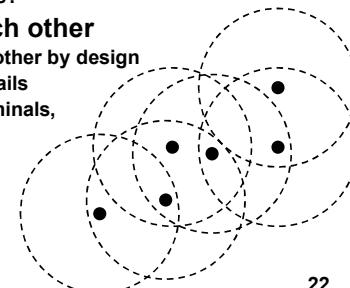


- Some nodes suffer from more interference than others
  - » Node density
  - » Traffic volume sent by neighboring nodes
- Leads to unequal throughput
- Similar to wired network: some flows traverse tight bottleneck while others do not

Peter A. Steenkiste, CMU

20

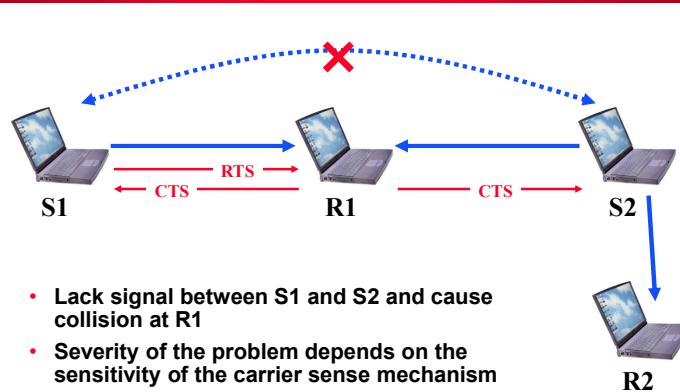
## Outline


- Data link fundamentals
  - » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

Peter A. Steenkiste, CMU

21

## Implications for Wireless Ethernet

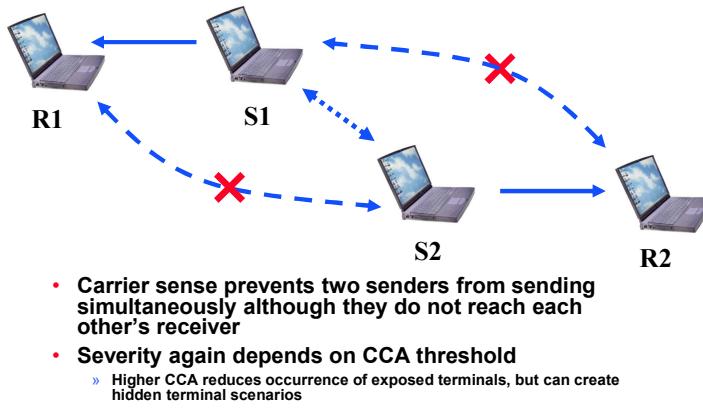

- Collision detection is not practical
  - » Ratio of transmitted signal power to received power is too high at the transmitter
  - » Transmitter cannot detect competing transmitters (is deaf while transmitting)
  - » So how do you detect collisions?
- Not all nodes can hear each other
  - » Ethernet nodes can hear each other by design
  - » “Listen before you talk” often fails
  - » Hidden terminals, exposed terminals,
  - » Capture effects
- Made worse by fading
  - » Changes over time!



Peter A. Steenkiste, CMU

22

## Hidden Terminal Problem

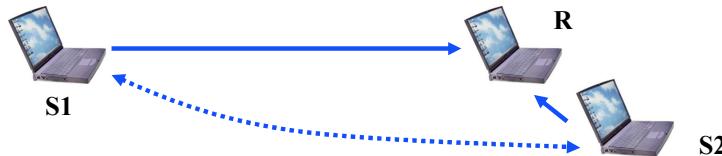



- Lack signal between S1 and S2 and cause collision at R1
- Severity of the problem depends on the sensitivity of the carrier sense mechanism
  - » Clear Channel Assessment (CCA) threshold

Peter A. Steenkiste, CMU

23

## Exposed Terminal Problem

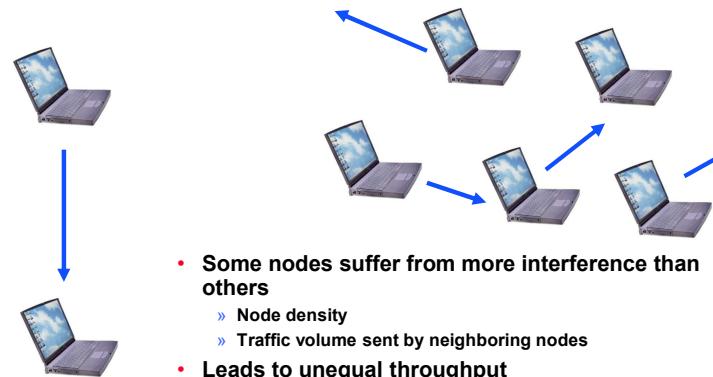



- Carrier sense prevents two senders from sending simultaneously although they do not reach each other's receiver
- Severity again depends on CCA threshold
  - » Higher CCA reduces occurrence of exposed terminals, but can create hidden terminal scenarios

Peter A. Steenkiste, CMU

24

## Capture Effect




- Sender S2 will almost always “win” if there is a collision at receiver R.
- Can lead to extreme unfairness and even starvation.
- Solution is power control
  - » Very difficult to manage in a non-provisioned environment!

Peter A. Steenkiste, CMU

25

## Wireless Packet Networking Problems



- Some nodes suffer from more interference than others
  - » Node density
  - » Traffic volume sent by neighboring nodes
- Leads to unequal throughput
- Similar to wired network: some flows traverse tight bottleneck while others do not

Peter A. Steenkiste, CMU

26

## Summary Wireless Challenges

- Wireless signal propagation creates problems for “wireless Ethernet”
  - » Collision Detection is not possible
  - » Hidden and exposed terminals
  - » Capture effect
- Aloha was the first wireless data communication protocol
  - » Simple: send whenever you want to
  - » Has low latency but low capacity

Peter A. Steenkiste, CMU

27

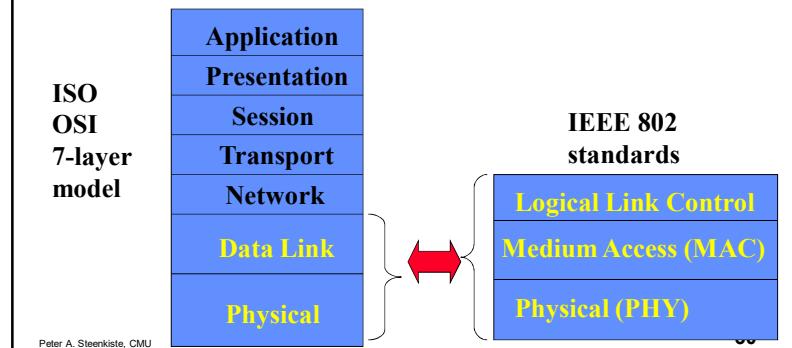
## Outline

- Data link fundamentals
  - » And what changes in wireless
- Ethernet
- Aloha
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards
  - » 802 protocol overview
  - » Wireless LANs – 802.11
  - » Personal Area Networks – 802.15

Peter A. Steenkiste, CMU

28

## History

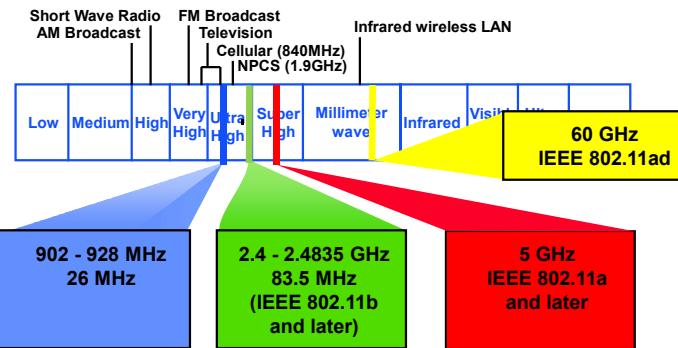

- Aloha wireless data network
- Car phones
  - » Big and heavy “portable” phones
  - » Limited battery life time
  - » But introduced people to “mobile networking”
  - » Later turned into truly portable cell phones
- Wireless LANs
  - » Originally in the 900 MHz band
  - » Later evolved into the 802.11 standard
  - » Later joined by the 802.15 and 802.16 standards
- Cellular data networking
  - » Data networking over the cell phone
  - » Many standards – throughput is the challenge

Peter A. Steenkiste, CMU

29

## Standardization of Wireless Networks

- Wireless networks are standardized by IEEE
- Under 802 LAN MAN standards committee




Peter A. Steenkiste, CMU

30

## Frequency Bands

- Industrial, Scientific, and Medical (ISM) bands
- Generally called “unlicensed” bands



Peter A. Steenkiste, CMU

31

## The 802 Class of Standards

- List on next two slides
- Some standards apply to all 802 technologies
  - » E.g. 802.2 is LLC
  - » Important for inter operability
- Some standards are for technologies that are outdated
  - » Not actively deployed anymore
  - » Many of the early standards are obsolete

Peter A. Steenkiste, CMU

32

## 802 Standards – Part 1

| Name                     | Description                                                    | Note                                                  |
|--------------------------|----------------------------------------------------------------|-------------------------------------------------------|
| IEEE 802.1               | Higher Layer LAN Protocols (Bridging)                          | active                                                |
| IEEE 802.2               | LLC                                                            | disbanded                                             |
| IEEE 802.3               | Ethernet                                                       | active                                                |
| IEEE 802.4               | Token bus                                                      | disbanded                                             |
| IEEE 802.5               | Token ring MAC layer                                           | disbanded                                             |
| IEEE 802.6               | MANs (DQDB)                                                    | disbanded                                             |
| IEEE 802.7               | Broadband LAN using Coaxial Cable                              | disbanded                                             |
| IEEE 802.8               | Fiber Optic TAG                                                | disbanded                                             |
| IEEE 802.9               | Integrated Services LAN (ISLan or isoEthernet)                 | disbanded                                             |
| IEEE 802.10              | Interoperable LAN Security                                     | disbanded                                             |
| IEEE 802.11              | Wireless LAN (WLAN) & Mesh (Wi-Fi certification)               | active                                                |
| IEEE 802.12              | 100BaseVG                                                      | disbanded                                             |
| IEEE 802.13              | Unused <sup>[2]</sup>                                          | Reserved for Fast Ethernet development <sup>[3]</sup> |
| IEEE 802.14              | Cable modems                                                   | disbanded                                             |
| IEEE 802.15              | Wireless PAN                                                   | active                                                |
| IEEE 802.15.1            | Bluetooth certification                                        | active                                                |
| IEEE 802.15.2            | IEEE 802.15 and IEEE 802.11 coexistence                        |                                                       |
| IEEE 802.15.3            | High-Rate wireless PAN (e.g., UWB, etc.)                       |                                                       |
| IEEE 802.15.4            | Low-Rate wireless PAN (e.g., ZigBee, WirelessHART, MiWi, etc.) | active                                                |
| Peter A. Steenkiste, CMU | IEEE 802.15.5                                                  | Mesh networking for WPAN                              |

## 802 Standards – Part 2

|               |                                                 |                      |
|---------------|-------------------------------------------------|----------------------|
| IEEE 802.15.6 | Body area network                               | active               |
| IEEE 802.15.7 | Visible light communications                    |                      |
| IEEE 802.16   | Broadband Wireless Access (WiMAX certification) |                      |
| IEEE 802.16.1 | Local Multipoint Distribution Service           |                      |
| IEEE 802.16.2 | Coexistence wireless access                     |                      |
| IEEE 802.17   | Resilient packet ring                           | hibernating          |
| IEEE 802.18   | Radio Regulatory TAG                            |                      |
| IEEE 802.19   | Coexistence TAG                                 |                      |
| IEEE 802.20   | Mobile Broadband Wireless Access                | hibernating          |
| IEEE 802.21   | Media Independent Handoff                       |                      |
| IEEE 802.22   | Wireless Regional Area Network                  |                      |
| IEEE 802.23   | Emergency Services Working Group                |                      |
| IEEE 802.24   | Smart Grid TAG                                  | New (November, 2012) |
| IEEE 802.25   | Omni-Range Area Network                         |                      |

34

Peter A. Steenkiste, CMU

## Outline

- 802 protocol overview
- Wireless LANs – 802.11
  - » Overview of 802.11
  - » 802.11 MAC, frame format, operations
  - » 802.11 management
  - » 802.11\*
  - » Deployment example
- Personal Area Networks – 802.15

Peter A. Steenkiste, CMU

35

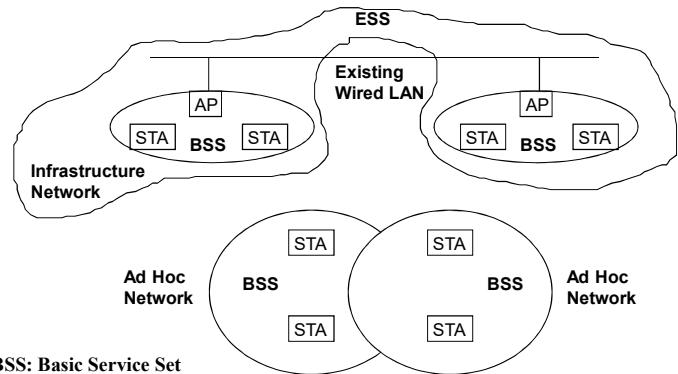
## IEEE 802.11 Overview

- Adopted in 1997 with goal of providing
  - » Access to services in wired networks
  - » High throughput
  - » Highly reliable data delivery
  - » Continuous network connection, e.g. while mobile
- The protocol defines
  - » MAC sublayer
  - » MAC management protocols and services
  - » Several physical (PHY) layers: IR, FHSS, DSSS, OFDM
- Wi-Fi Alliance is industry group that certifies interoperability of 802.11 products

Peter A. Steenkiste, CMU

36

## Infrastructure and Ad Hoc Mode


- Infrastructure mode: stations communicate with one or more access points which are connected to the wired infrastructure
  - » What is deployed in practice
- Two modes of operation:
  - » Distributed Control Functions - DCF
  - » Point Control Functions – PCF
  - » PCF is rarely used - inefficient
- Alternative is “ad hoc” mode: multi-hop, assumes no infrastructure
  - » Rarely used, e.g. military
  - » Hot research topic!

Our Focus

Peter A. Steenkiste, CMU

37

## 802.11 Architecture



Peter A. Steenkiste, CMU

38

## Terminology for DCF

- Stations and access points
- **BSS - Basic Service Set**
  - » One access point that provides access to wired infrastructure
  - » Infrastructure BSS
- **ESS - Extended Service Set**
  - » A set of infrastructure BSSs that work together
  - » APs are connected to the same infrastructure
  - » Tracking of mobility
- **DS – Distribution System**
  - » AP communicates with each other
  - » Thin layer between LLC and MAC sublayers

Peter A. Steenkiste, CMU

39