

18-452/18-750
Wireless Networks and Applications
Lecture 8: LAN MAC Protocols
Wireless versus Wired

Peter Steenkiste

Fall Semester 2018
<http://www.cs.cmu.edu/~prs/wirelessF18/>

Peter A. Steenkiste

1

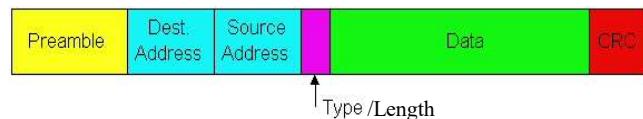
Outline

- Data link fundamentals
 - » And what changes in wireless
- Aloha
- Ethernet
- Wireless-specific challenges
- 802.11 and 802.15 wireless standards

Peter A. Steenkiste

2

Datalink Functions


- **Framing:** encapsulating a packet into a bit stream.
 - » Add header, mark and detect frame boundaries, ...
- **Logical link control:** managing the transfer between the sender and receiver, e.g.
 - » Error detection and correction to deal with bit errors
 - » Flow control: avoid that the sender outruns the receiver
- **Media access:** controlling which device gets to send a frame next over a link
 - » Easy for point-to-point links; half versus full duplex
 - » Harder for multi-access links: who gets to send?

Peter A. Steenkiste

3

Framing

- Typical structure of a “wired” packet:
 - » Preamble: synchronize clocks sender and receiver
 - » Header: addresses, type field, length, etc.
 - » The data to be send, e.g., an IP packet
 - » Trailer: padding, CRC, ..

- How does wireless differ?
 - » Different transmit rates for different parts of packet
 - » Explicit multi-hop support
 - » Control information for physical layer
 - » Ensure robustness of the header

Peter A. Steenkiste

4

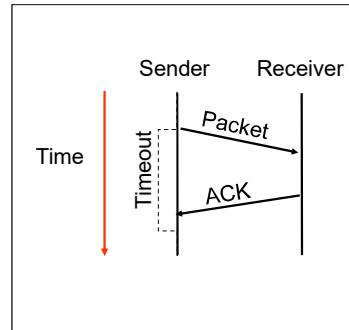
Error Control: Error Detection and Error Recovery

- **Detection:** only detect errors
 - » Make sure corrupted packets get thrown away, e.g. Ethernet
 - » Use of error detection codes, e.g. CRC
- **Recovery:** also try to recover from lost or corrupted packets
 - » Option 1: forward error correction (redundancy)
 - » Option 2: retransmissions
- **How does wireless differ?**
 - » Uses CRC to detect errors, similar to wired
 - » Error recovery is much more important because errors are more common and error behavior is very dynamic
 - » What approach is used?

Peter A. Steenkiste

5

Error Recovery in Wireless


- **Use of redundancy:**
 - » Very common at physical layer – see PHY lectures
- **Use of Automatic Repeat Request (ARQ)**
 - » Use time outs to detect loss and retransmit
- **Many variants:**
 - » Stop and wait: one packet at a time
 - The most common at the datalink
 - » Sliding window: receiver tells sender how much to send
 - Many retransmission strategies: go-back-N, selective repeat, ...
- **When should what variant be used?**
 - » Noise versus bursty (strong) interference

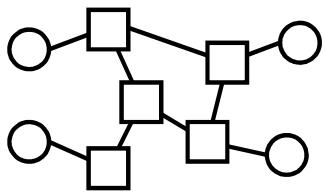
Peter A. Steenkiste

6

Stop and Wait

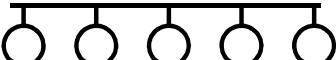
- Simplest ARQ protocol
- Send a packet, stop and wait until acknowledgement arrives
- Will examine ARQ issues later in semester
- Limitations?
- What popular for the datalink?

7


Media Access Control

- How do we transfer packets between two hosts connected to the same network?
- Using point-to-point “links” with “switches” -- store-and-forward
 - » Very common in wired networks, at multiple layers
- Multiple access networks
 - » Multiple hosts are sharing the same transmission medium
 - » Need to control access to the medium
 - » Taking turn versus contention based protocols
- What is different in wireless?
 - » Is store and forward used?
 - » Is multiple access used?

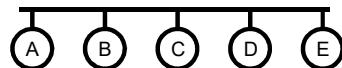
Peter A. Steenkiste


8

Datalink Architectures

- Routing and packet forwarding.
- Point-to-Point error and flow control.

Switched ethernet, mesh and ad hoc networks

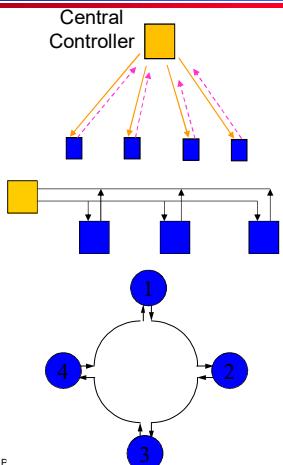

- Media access control.
- Scalability.

Traditional ethernet, Wifi, Aloha, ...

Peter A. Steenkiste

9

Multiple Access Networks



- Who gets to send a packet next?
- **Scheduled access: explicit coordination ensures that only one node transmits**
 - » Looks cleaner, more organized, but ...
 - » Coordination introduces overhead – requires communication (oops)
- **Random access: no explicit coordination**
 - » Potentially more efficient, but ...
 - » How does a node decide whether it can transmit?
 - » Collisions are unavoidable – also results in overhead
 - » How do you even detect a collision?

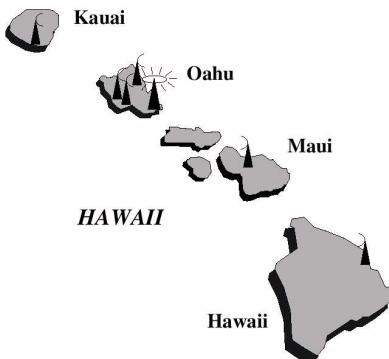
Peter A. Steenkiste

10

Scheduled Access MACs

- **Polling: controller polls each nodes**
- **Reservation systems**
 - » Central controller
 - » Distributed algorithm, e.g. using reservation bits in frame
- **Token ring: token travels around ring and allows nodes to send one packet**
 - » Distributer version of polling
 - » FDDI, ...

11


Outline

- **Data link fundamentals**
 - » And what changes in wireless
- **Aloha**
- **Ethernet**
- **Wireless-specific challenges**
- **802.11 and 802.15 wireless standards**

Peter A. Steenkiste

12

Why ALOHA

Peter A. Steenkiste

13

Pure ALOHA

- Developed in University of Hawaii in early 1970's.
- It does not get much simpler:
 1. A user transmits at will
 2. If two or more messages overlap in time, there is a collision – receiver cannot decode packets
 3. Receive waits for roundtrip time plus a fixed increment – lack of ACK = collision
 4. After a collision, colliding stations retransmit the packet, but **they stagger their attempts randomly** to reduce the chance of repeat collisions
 5. After several attempts, senders give up
- Although very simple, it is wasteful of bandwidth, attaining an efficiency of at most $1/(2e) = 0.18$

Peter A. Steenkiste

14

Poisson Process

Informal: memory less

- A Poisson process of “rate” $\lambda > 0$ is a counting process $a(t)$ which satisfies the following conditions:
 1. The process has independent increments in disjoint intervals
 - i.e., $a(t_1+\Delta t)-a(t_1)$ is independent of $a(t_2+\Delta t)-a(t_2)$ if $[t_1, t_1+\Delta t]$ and $[t_2, t_2+\Delta t]$ are disjoint intervals
 2. The increments of the process are stationary.
 - i.e., $a(t_1+\Delta t)-a(t_1)$ does not depend on t_1
 3. The probability of exactly one event occurring in an infinitesimal interval Δt is $P[a(\Delta t) = 1] \cong \lambda \Delta t$
 4. The probability that more than one event occurs in any infinitesimal interval Δt is $P[a(\Delta t) > 1] \cong 0$
 5. The probability of zero events occurring in Δt is $P[a(\Delta t) = 0] \cong 1 - \lambda \Delta t$

Peter A. Steenkiste

15

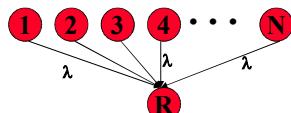
15

Poisson Distribution

- Above definitions lead to: Probability $P(k)$ that there are exactly k events in interval of length T is,

$$P(k) = \frac{(\lambda T)^k e^{-\lambda T}}{k!}$$
- We call the above probability the “Poisson distribution” for arrival rate λ
- Its mean and variance are:

$$E(k) = \lambda T$$

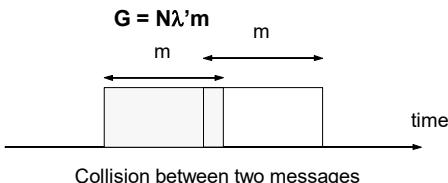

$$\sigma_k^2 = E(k^2) - E^2(k) = \lambda T$$
- Many nice properties, e.g. sum of N independent Poisson processes is a Poisson process

Peter A. Steenkiste

16

Pure ALOHA: Model

- Let there be N stations contending for use of the channel.
- Each station transmits λ packets/sec on average based on a Poisson arrival process
- All messages transmitted are of the same fixed length, m , in units of time
- Let new traffic intensity be $S \equiv N\lambda m$
- Since all new packets eventually get through, 'S' is also the network throughput



Peter A. Steenkiste

17

Pure Aloha: Vulnerability

- Simplification: assume the retransmitted messages are independent Poisson process as well
- The total rate of packets attempting transmission = newly generated packets + retransmitted ones = $\lambda' > \lambda$
- The total traffic intensity (including retransmissions) is ,

Collision between two messages

- The "vulnerable period" in which a collision can occur for a given packet is $2 \times m$ sec

Peter A. Steenkiste

18

Pure Aloha: Analysis

- Calculate the "Probability of no collision" two ways:

1. Probability that there is no arrival in interval $2 \times m$:

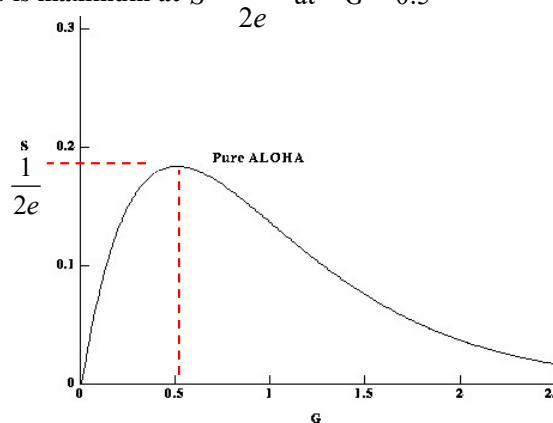
$$P(\text{no arrival in } 2 \times m \text{ sec}) = e^{-2N\lambda'm} = e^{-2G}$$

2. Since all new arrivals eventually get through, we have

$$\lambda/\lambda' = S/G = \text{Fraction of transmissions that are successful}$$

- So, $S/G = \text{Probability of no collision}$
 $= P(\text{no arrival in } 2m \text{ sec})$

Thus,

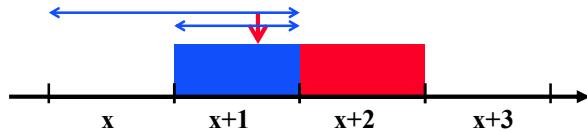

$$S/G = e^{-2G} \quad \longrightarrow \quad \text{Maximum Throughput of Pure Aloha}$$

Peter A. Steenkiste

19

Analysis Conclusion

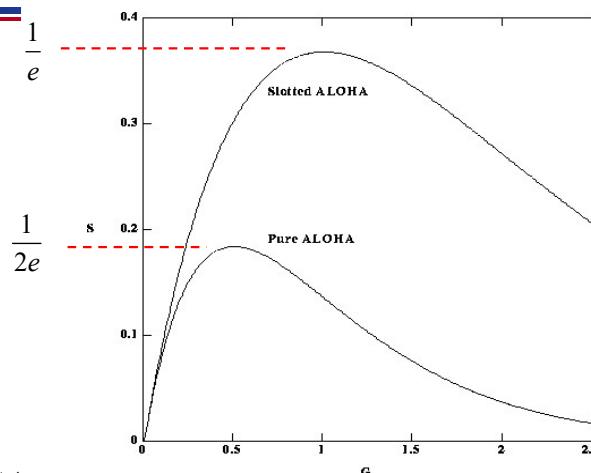
- S is maximum at $S = \frac{1}{2e}$ at $G = 0.5$



Peter A. S.

20

Slotted ALOHA


- Transmission can only start at the beginning of each slot of length T
- Vulnerable period is reduced to T
 - » Instead of $2xT$ in Aloha
- Doubles maximum throughput.

Peter A. Steenkiste

21

Analysis Results Slotted ALOHA

Peter A

2

Discussion of ALOHA

- Maximum throughput of ALOHA is very low $1/(2e) = 18\%$, but
 - » Has very low latency under light load
- Slotted Aloha has twice the performance of basic Aloha, but performance is still poor
 - » Slightly longer delay than pure Aloha
 - » Inefficient for variable sized packets!
 - » Must synchronize nodes
- Still, not bad for an absolutely minimal protocol!
 - » Good solution if load is low – used in some sensor networking technologies (cheap, simple)
- How do we go faster?

Peter A. Steenkiste

23