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* Please form teams of two people for Project 1.
» Please use Canvas
» Separate teams on Pgh and SV campus

* We should have a video classroom for Friday
recitations/lectures.
» Hopefully this will be ready by tomorrow

» | will keep you posted so please check for
announcements
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Outline

Spread Spectrum

* RF introduction
* Modulation and multiplexing
* Channel capacity

« Antennas and signal propagation —
+ Modulation ~__—Bad News

 Diversity and coding (00 '\GOOd News

» Space, time and frequency diversi:y/\“v, : Story
- OFDM

Typical
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» Spread transmission over a wider bandwidth
» Don’t put all your eggs in one basket!

* Also useful to minimize impact of a “bad”
frequency in regular environments

* Good for military: jamming and interception
becomes harder

* Drawback: you use more spectrum

* What can be gained from this apparent waste
of spectrum?

» Immunity from various kinds of noise and multipath
distortion

» Can be used for hiding and encrypting signals

» Several users can independently use the same higher
bandwidth with very little interference
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Frequency Hopping Spread
Spectrum (FHSS)

Example:
Bluetooth

¢ Have the transmitter hop between a seemingly
random sequence of frequencies
» Each frequency has the bandwidth of the original signal

* Dwell time is the time spent using one
frequency

» Spreading code determines the hopping
sequence
» Must be shared by sender and receiver (e.g. standardized)

Frequencyl- - - - - - = = - - - - - - e ———— - -

* Uses frequency hopping spread spectrum in
the 2.4 GHz ISM band

+ Uses 79 frequencies with a spacing of 1 MHz
» Other countries use different numbers of frequencies

* Frequency hopping rate is 1600 hops/s
» Signal uses GFSK

» Mimimum deviation is 115 KHz
* Maximum data rate is 1 MHz

* Also used in the original WiFi standard
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Direct Sequence Spread Spectrum
(DSSS)

» Each bit in original signal is represented by
multiple bits (chips) in the transmitted signal
» Spreading code spreads signal across a
wider frequency band
» Spread is in direct proportion to number of bits used
» E.g. exclusive-OR of the bits with the spreading code

* The resulting bit stream is used to modulate

the signal
Original Signal 1 1 0 1 0 0
N /N ZIN /NG I /I
SpreadingCode 0 0 1 01 0 01 1001110101 XOR
o lllllllllilllillll)
TransmittedChips 1 1 0 1 0 1 01 1 110110101

Modulated Signal | | | I | | | | | | | I |
9
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Spread Spectrum

[nput data Output datal

Channel
encoder

Channel

Spreading
code
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generator

Pseudonoise
generator
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Transmitter

Receiver

Direct Sequence Spread Spectrum
0 1 0 1] 1

0 1 1

Data input A | | | | | |

T
0110100101101 0110101001101001001

Locally generated
PN bit stream
+T..-(l—

0110011001 10101 110100011101 10110

Transmitted signal
C=A®B

Received signal C

Locally generated
PN bit stream
identical to B

above

Data output
A=C®B

Example:
Original 802.11 Standard (DSSS)

* The DS PHY uses a 1 Msymbol/s rate with an 11-
to-1 spreading ratio and a Barker chipping
sequence

» Barker sequence has low autocorrelation properties — why?
» Uses about 22 MHz
* Receiver decodes by counting the number of “1”
bits in each word
» 6 “1” bits correspond to a 0 data bit
* Chips were transmitted using DBPSK modulation
» Resulting data rate is1 Mbps (i.e. 11 Mchips/sec)
» Extended to 2 Mbps by using a DQPSK modulation
— Requires the detection of a /4 phase shift
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Spectrogram:
DSSS-encoded Signal
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Code Division Multiple Access

* Users use a spectrum band at the same time,
but they use different codes to spread their
data over the frequency

» DSSS where users use different spreading sequences
» Use spreading sequences that are orthogonal, i.e. they
have minimal overlap

» The signal of other users will appear as noise

» But since the each user uses a lot of spectrum their
signal is very robust

+ Offers an easy way to share spectrum

» Adding users will increase the noise for each user
» This will reduce their throughput — sharing!

Peter A. Steenkiste
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DSSS Properties

» Since each bit is sent as multiple chips, you
need more bps bandwidth to send the signal.
» Number of chips per bit is called the spreading ratio
* Given the Nyquist and Shannon results, you
need more spectral bandwidth to do this.
» Spreading the signal over the spectrum
« Advantage is that is transmission is more
resilient.
» Effective against noise and multi-path
» DSSS signal will look like noise in a narrow band
» Can lose some chips in a word and recover easily
» Multiple users can share bandwidth (easily).
» Follows directly from Shannon (capacity is there)
» E.g., Code Division Multiple Access - next
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CDMA Principle

+ Basic Principles of CDMA
» D = rate of data signal
» Break each bit into k chips - user-specific fixed pattern
» Chip data rate of new channel = kD
+ If k=6 and code is a sequence of 1s and -1s
» Fora ‘1’ bit, A sends code as chip pattern
— <c1, c2, c3, c4, c5, c6>
» Fora ‘0’ bit, A sends complement of code
— <-c1, -¢2, -c3, -c4, -¢5, -c6>
* Receiver knows sender’s code and performs electronic
decode function

S,(d)=dixcl+d2xc2+d3xc3+d4x cAd+d5xc5+d6xch

— <d1, d2, d3, d4, d5, d6> = received chip pattern
— <c1, c2, c3, c4, c5, c6> = sender’s code
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CDMA Example

* UserAcode=<1,-1,-1,1,-1,1>
» Tosend a1bit=<1,-1,-1,1,-1, 1>
» Tosend a0bit=<-1,1,1,-1,1, -1>
- UserBcode=<1,1,-1,-1,1,1>
» Tosenda1bit=<1,1,-1,-1,1,1>
* Receiver receiving with A’s code
» (A’s code) x (received chip pattern)
— User A ‘1’ bit: 6 -> 1
— User A ‘0’ bit: -6 -> 0
— User B ‘1’ bit: 0 -> unwanted signal ignored

Peter A. Steenkiste
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CDMA Discussion

+ CDMA does not assign a fixed bandwidth but a
user’s bandwidth depends on the traffic load

» More users results in more “noise” and less throughput for
each user, e.g. more information lost due to errors

» How graceful the degradation is depends on how
orthogonal the codes are

» TDMA and FDMA have a fixed channel capacity

« Weaker signals may be lost in the clutter

» This will systematically put the same node pairs at a
disadvantage — not acceptable

» The solution is to add power control, i.e. nearby nodes use
a lower transmission power than remote nodes

Peter A. Steenkiste
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CDMA for Direct Sequence Spread
Spectrum
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CDMA Example

* CDMA cellular standard
» 3G standard
» Used in the US, e.g. Sprint

* Allocates 1.228 MHz for base station to
mobile communication
» Shared by 64 “code channels”
» Used for voice (55), paging service (8), and control (1)

* Provides a lot error coding to recover from
errors
» Voice data is 8550 bps
» Coding and FEC increase this to 19.2 kbps
» Then spread out over 1.228 MHz using DSSS; uses QPSK

Peter A. Steenkiste 20




Summary

» Spread spectrum achieves robustness by
spreading out the signal over a wide channel
» Sending different data blocks on different frequencies, or
» Spreading all data across the entire channel
+ CDMA builds on the same concept by
allowing multiple senders to simultaneously
use the same channel

» Sender and receive must coordinate so receiver can
decode the data

Peter A. Steenkiste 21

How Do We Increase Rates?

» Two challenges related to multipath:

* Frequency selective fading starts to have a
bigger impact because there is less
redundancy in the signal

* As rates increase, symbol times shrink and
the effects of inter-symbol interference
becomes more pronounced

» See earlier examples

* We would like an encoding and modulation
solution that has longer symbol times and
allows us to fight frequency selective fading
more effectively

Peter A. Steenkiste 23
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Outline

* RF introduction

* Modulation and multiplexing

* Channel capacity

« Antennas and signal propagation
* Modulation

 Diversity and coding

- OFDM
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Frequency-Selective
Radio Channel

Power response [dB]

| Frequen?y

* Interference of reflected and LOS radio waves
results in frequency dependent fading

* Impact is reduced for narrow channels
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Inter-Symbol-Interference

Transmitted signal: N B A N I

Received Signals:
Line-of-sight: |

Reflected: Jrr—rr eIt

on the channel

The symbols add up Delays
-> Distortion!

Distributing Bits over Subcarriers

25
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Channel impulse i

response
Single Carrier wh

Channels are transmitted

It
2 Carriers ! > at different frequencies
(sub-carriers)

8 Carriers

L]
M m Resistance to ISI improves

¢ with number of channels

Benefits of Narrow Band Channels

Channel impulse i }Q/b( v Channel

response transfer functior

1 Carrier (serial) Mj !

2 Carriers }UUUUL

WT ' Sub-carriers are

A/ 2"
. “narrowband”:
8 Carriers —\_|4

we Flat fading in

—l_’_l_ each sub-carrier
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OFDM - Orthogonal Frequency
Division Multiplexing
V=
- Distribute bits over N

subcarriers that use for ¥ DA
different frequencies in the :
band B

» Multi-carrier modulation

» Each signal uses ~B/N bandwidth

* Since each subcarrier only Kope
encodes 1/N of the bit
stream, each symbol takes
N times longer in time

» Since signals are narrower,
fighting frequency selective
fading is easier

Peter A. Steenkiste L= (N DA




OFDM Transmission

Frequency

Frequency
selective
fading
distorts
wide-band

signals Time

Frequency Multipath causes ISI

Narrow
band
signals

Time

Longer symbols
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Adjacent Symbol Interference (ASI)
Symbol Smearing Due to Channel

xt) —{_h@) _J—> v0

X(t) h(t) y(t)

I U .

> t ;
§mbol Channel Distorted Symbol
Adjacent Symbols

- ] || <.
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Fighting ISI

* Frequency selective fading will only affects
some subcarriers
» May be able to simply amplify affected subcarriers
» No need for complex dynamic equalizer
— Become less effective with shorter symbols

» Further reduce ISI effects by sending a “cyclic
prefix” before every burst of symbols

» Can be used to absorb delayed copies of real symbols,
without affecting the symbols in the next burst

» Prefix is a copy of the tail of the symbol burst to maintain a
smooth symbol

» E.g. a cyclic prefix of 64 symbols and data bursts of 256
symbols using QPSK modulation

Peter A. Steenkiste 30

Guard Interval Inserted Between Adjacent
Symbols to Suppress ASI

x(t) —> y)

) () oy

¢ i
mbol Channel Distorted Symbol

Symbols Separated by Guard Intervals

2 o I |,
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Cyclic Prefix Inserted in Guard Interval to Suppress
Adjacent Channel Interference (ACI)

x(t) —> yt)

x() h(t) Discard y(t) Discard
r
t Lﬂ L
§mbol Channel Distorted Symbol

§/mbol Guard Intervals Filled With Cyclic Prefix

42 ]CP]" ..........
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Implementing OFDM

This is great, but OFDM looks very
complicated!

* How many radios do | need? 48?

* How do | get 48 (or more) subcarriers packed
very densely?

Do | need guard bands between the
subcarriers, and if so, how wide?
» Looks like a lot of wasted spectrum

Peter A. Steenkiste 35
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Use of Redundancy in OFDM

* OFDM uses error coding as described earlier
» Degree of error coding depends on channel conditions
- OFDM offers frequency and diversity
» Frequency: data is spread out over multiple subcarriers
» Time: data spread out over multiple time slots

Time ——>

<—— Frequency —48 —

* Combining OFDM with MIMO adds space
diversity (discussed later in course)

Peter A. Steenkiste 34

Subcarriers are “Orthogonal”

* Peaks of spectral density of each carrier coincide
with the zeros of the other carriers
» Carriers can be packed very densely with minimal interference
» Requires very good control over frequencies

S0
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Densely Packing
OFDM Channels

Conventional multicarrier techniques

Orthogonal multicarrier techniques

Peter A. Steenkiste

Ch.5 Ch.6 Ch.7 Ch.8 Ch.9 Ch.10

AAN
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Saving of bandwidth

I frequency
1

1
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1
I

50% bandwidth saving

frequency
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OFDM Spectrum Use
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OFDM Transmitter

Implementing OFDM

* The naive approach is to modulate individual
subcarriers and move them each to the right
frequency

» Not practical: the subcarriers are packed very densely
and their spacing must be very precise

» Also complicated: lots of signals to deal with!

* How it works: Radio modulates the
subcarriers and combines them in the digital
domain and then converts the signal to the
analog domain

» The details do not matter for this course
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(2. Convolutional

Encoder

Serial

to
Parallel

o] [

iFFT

i £

Parallel
To
Serial

Modulation

Cyclic
Prefix

DAC
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OFDM in 802.11

Murouwed bia

NODOND  AOOCEEIOHES BROCOONE BONEOOEE o udonom

(0] Data Btz (11 1E-Codsd [ SM-Coded  [3) Interlemed (4] Srouped Into
QPSE Syrnbola
5] QFSK Modukted
5 b pped onto SUbcaITlers Bz 0 FDR Synksl

» Uses punctured code: add redundancy and
then drop some bits to reach a certain level of

redundancy
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MCS for 802.11a
. Modulation Data rate
RATE bits . (Mbits)
13 1101 1/2
16 1111 3/4
0101 1/2 12
7 0111 3/4 18
9 1001 16- 1/2 24
1 1011 16- 3/4 36
1 0001 64- 2/3 48
3 0011 64- 3/4 54
Symbol rate is 12 Msymbols/sec
43
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OFDM in WiFi

* OFDM is used in all “post b” WiFi standard

* Example: 802.11a

* 20 MHz band, with a signal of 16.6 MHz

» 52 subcarriers: 48 for data, 4 pilots

* Modulations: BPSK, QPSK, 16-QAM, 64-QAM

* 4 microsec symbol duration, including a 0.8
microsec guard interval

* Modulation and coding scheme determines
the bit rates

» Next slide

Peter A. Steenkiste
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Discussion

« OFDM is very effective in fighting frequency
selective fading and ISI

* Finally a free lunch?

* No - you introduce some overhead
» Frequency: you need space between the sub carriers
» Time: You need to insert prefixes

* You also add complexity
» How do you create many, closely spaced subcarriers?

» The OFDM signal is fairly flat in the frequency domain, so
it is very variable in the time domain

— High peak-to-average Power ratio (PAPR)
— Can be a problem for simple, mobile devices

Peter A. Steenkiste
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Summary

+ OFDM fights frequency selective fading and
inter-symbol interface to increase rates
» Both become more significant at higher rates

» It modules a large number of narrow-band signals
(subcarriers) instead of a single wide channel

» Cyclic prefixes are used to separate symbols
* It uses time and frequency diversity,

combined with
effect of fading

coding (FEC) to reduce the

» Can “pick” the right bit rate for the observed channel
conditions by adjusting both the modulation and coding

parameters

Peter A. Steenkiste
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