

18-452/18-750
Wireless Networks and Applications
Lecture 5: Physical Layer -
Channel Capacity and Antennas

Peter Steenkiste
Carnegie Mellon University

Fall Semester 2018

<http://www.cs.cmu.edu/~prs/wirelessF18/>

Peter A. Steenkiste

1

Propagation Degrades RF Signals

- Attenuation in free space: signal gets weaker as it travels over longer distances
 - » Radio signal spreads out – free space loss
 - » Refraction and absorption in the atmosphere
- Obstacles can weaken signal through absorption or reflection.
 - » Reflection redirects part of the signal
- Multi-path effects: multiple copies of the signal interfere with each other at the receiver
 - » Similar to an unplanned directional antenna
- Mobility: moving the radios or other objects changes how signal copies add up
 - » Node moves $\frac{1}{2}$ wavelength -> big change in signal strength

Peter A. Steenkiste

3

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
 - » How do antennas work
 - » Propagation properties of RF signals
 - » Modeling the channel
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

2

Free Space Loss

$$\text{Loss} = P_t / P_r = (4\pi d)^2 / (G_r G_t \lambda^2) = (4\pi f d)^2 / (G_r G_t c^2)$$

- Loss increases quickly with distance (d^2).
- Need to consider the gain of the antennas at transmitter and receiver.
- Loss depends on frequency: higher loss with higher frequency.
 - » Can cause distortion of signal for wide-band signals
 - » Impacts transmission range in different spectrum bands

Peter A. Steenkiste

4

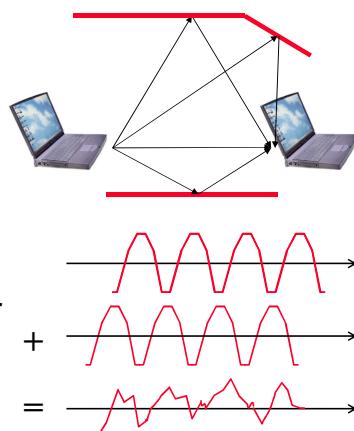
Log Distance Path Loss Model

- Log-distance path loss model captures free space attenuation plus additional absorption by energy by obstacles:
$$\text{Loss}_{\text{db}} = L_0 + 10 n \log_{10}(d/d_0)$$
- Where L_0 is the loss at distance d_0 and n is the path loss distance component
- Value of n depends on the environment:
 - » 2 is free space model
 - » 2.2 office with soft partitions
 - » 3 office with hard partitions
 - » Higher if more and thicker obstacles

Peter A. Steenkiste

5

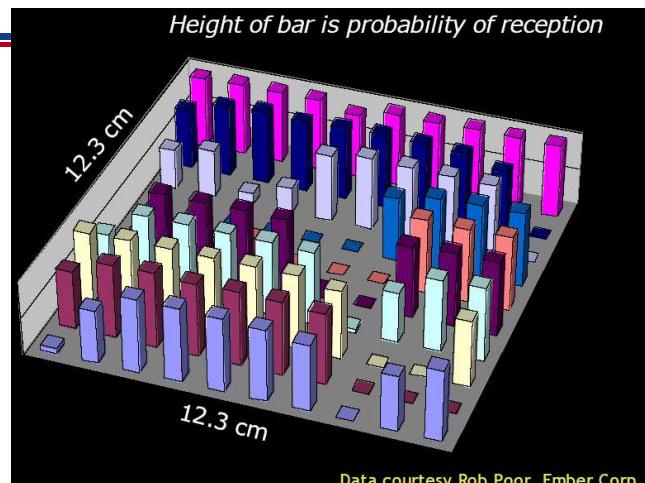
Obstacles and Atmosphere


- Objects absorb energy as the signal passes through them
 - » Degree of absorption depends strongly on the material
 - » Paper versus brick versus metal
- Absorption of energy in the atmosphere.
 - » Very serious at specific frequencies, e.g. water vapor (22 GHz) and oxygen (60 GHz)
- Refraction/refraction in the atmosphere
 - » Pockets of air can have different properties, e.g., humidity, temperature, ...
 - » Redirects the signal in unpredictable ways
 - » Can reduce energy and increase path length

Peter A. Steenkiste

6

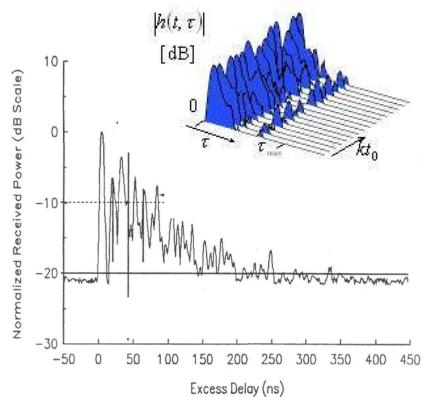
Multipath Effect


- Receiver receives multiple copies of the signal, each following a different path
- Copies can either strengthen or weaken each other
 - » Depends on whether they are in or out of phase
- Changes of half a wavelength affect the outcome
 - » Short wavelengths, e.g. 2.4 GHz \rightarrow 12 cm, 900 MHz \rightarrow ~1 ft
- Small adjustments in location or orientation of the wireless devices can result in big changes in signal strength

Peter A. Steenkiste

7

Example: 900 MHz



Peter A. Steenkiste

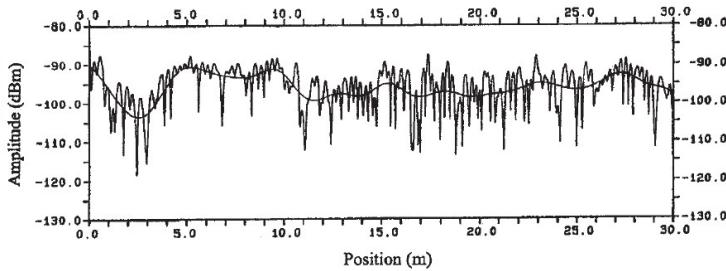
8

Channel Sounding

- Measure response of channel to an impulse
 - » Signals from multiple paths is spread in time in time
 - » Many frequencies
- Typically interested in response across frequency range
 - » Delay spread, delay spread and impact on phase

Based on www.cs.bilkent.edu.tr/~korpe/courses/cs515-fall2002/slides6.ppt
Peter A. Steenkiste
SAAB MEDAV Technology - http://www.channelsounder.de/csprinciple_site4.html

9


Fading in the Mobile Environment

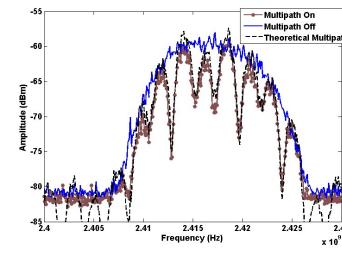
- Fading: time variation of the received signal strength caused by changes in the transmission medium or paths.
 - » Rain, moving obstacles, moving sender/receiver, ...
- Slow: changes the paths that make up the received signal – results in a change in the average power levels around which the fast fading takes place
 - » Mobility affects path length and the nature of obstacles
- Fast: changes in distance of about half a wavelength – results in big fluctuations in the instantaneous power

Peter A. Steenkiste

10

Fading - Example

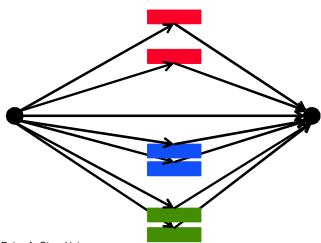
- Frequency of 910 MHz or wavelength of about 33 cm

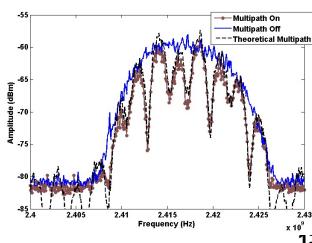

Peter A. Steenkiste

11

Frequency Selective versus Non-selective Fading

- Non-selective (flat) fading: fading affects all frequency components in the signal equally
 - » There is only a single path, or a strongly dominating path, e.g., LOS
- Selective fading: frequency components experience different degrees of fading
 - » Multiple paths with path lengths that change independently
 - » Region of interest is the spectrum used by the channel


Peter A. Steenkiste


12

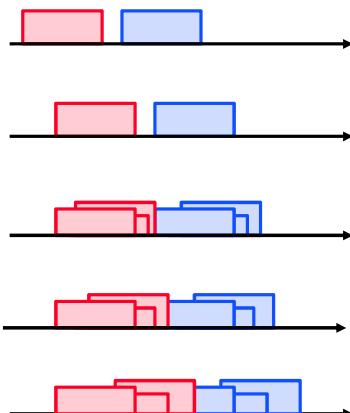
Some Intuition for Selective Fading

- Assume three paths between a transmitter and receiver
- The outcome is determined by the differences in path length
 - But expressed in wavelengths \rightarrow outcome depends on frequency
- As transmitter, receivers or obstacles move, the path length differences change, i.e., there is fading
 - But changes depend on wavelength, i.e. fading is frequency selective
- Significant concern for wide-band channels

Peter A. Steenkiste

13

Example Fading Channel Models


- Ricean distribution: LOS path plus indirect paths**
 - Open space or small cells
 - K = power in dominant path/power in scattered paths
 - Speed of movement and min-speed
- Raleigh distribution: multiple indirect paths but no dominating or direct LOS path**
 - Lots of scattering, e.g. urban environment, in buildings
 - Sum of uncorrelated Gaussian variables
 - $K = 0$ is Raleigh fading
- Nakagami can be viewed as generalization: sum of independent Raleigh paths**
 - Clusters or reflectors resulting paths with Raleigh fading, but with different path lengths
- Many others!**

Peter A. Steenkiste

14

Inter-Symbol Interference

- Larger difference in path length can cause inter-symbol interference (ISI)
 - Different from effect of carrier phase differences
- Delays on the order of a symbol time result in overlap of the symbols
 - Makes it very hard for the receiver to decode
 - Corruption issue – not signal strength
 - Significant concern for high bit rates (short symbol times)

Peter A. Steenkiste

15

How Bad is the Problem?

- ISI depends on the symbol time
 - Time to send a single or multi-bit symbol
 - I.e., property of the baseband signal
- Fast fading depends on wavelength of carrier wave
 - Distances are much shorter!

Rate MSps	Time microsec	Distance meter
1	1	300
5	0.2	60
10	0.1	30
50	0.02	6

Rate GHz	Wavelength nanosec	Length cm
0.9	1.11	33.3
2.4	0.417	12.5
5	0.2	6
60	0.0167	0.5

Peter A. Steenkiste

16

Doppler Effect

- Movement by the transmitter, receiver, or objects in the environment can also create a doppler shift:
$$f_m = (v / c) * f$$
- Results in distortion of signal
 - Shift may be larger on some paths than on others
 - Shift is also frequency dependent (minor)
- Effect only an issue at higher speeds:
 - Speed of light: $3 * 10^8$ m/s
 - Speed of car: 10^5 m/h = 27.8 m/s
 - Shift at 2.4 GHz is 222 Hz – increases with frequency
 - Impact is that signal “spreads” in frequency domain

Peter A. Steenkiste

18

Noise Sources

- Thermal noise: caused by agitation of the electrons
 - Function of temperature
 - Affects electronic devices and transmission media
- Intermodulation noise: result of mixing signals
 - Appears at $f_1 + f_2$ and $f_1 - f_2$ (when is this useful?)
- Cross talk: picking up other signals
 - E.g. from other source-destination pairs
- Impulse noise: irregular pulses of high amplitude and short duration
 - Harder to deal with
 - Interference from various RF transmitters
 - Should be dealt with at protocol level

Peter A. Steenkiste

Fairly Predictable
➤ Can be planned for or avoided
Noise Floor

19

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- Antennas and signal propagation
 - How do antennas work
 - Propagation properties of RF signals
 - Modeling the channel
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

20

Power Budget

$$R_{\text{power}} (\text{dBm}) = T_{\text{power}} (\text{dBm}) + \text{Gains} (\text{dB}) - \text{Losses} (\text{dB})$$

- Receiver needs a certain SINR to be able to decode the signal
 - Required SINR depends on coding and modulation schemes, i.e. the transmit rate
- Factors reducing power budget:
 - Noise, attenuation (multiple sources), fading, ..
- Factors improving power budget:
 - Antenna gains, transmit power

Peter A. Steenkiste

21

Channel Reciprocity Theorem

- If the role of the transmitter and the receiver are interchanged, the instantaneous signal transfer function between the two remains unchanged
- Informally, the properties of the channel between two antennas is the same in both directions, i.e. the channel is symmetric
- Channel in this case includes all the signal propagation effects and the antennas

22

Peter A. Steenkiste

Reciprocity Does not Apply to Wireless “Links”

- “Link” corresponds to the packet level connection between the devices
 - » In other words, the throughput you get in the two directions can be different.
- The reason is that many factors that affect throughput may be different on the two devices:
 - » Transmit power and receiver threshold
 - » Quality of the transmitter and receiver (radio)
 - » Observed noise
 - » Interference
 - » Different antennas may be used (spatial diversity - see later)

23

Peter A. Steenkiste

Summary

- The wireless signal can be severely degraded as it travels to the receiver:
- Attenuation increases with the distance to the receiver and as a result of obstacles
- Reflections create multi-path effects that cause distortion and inter-symbol interference
- Mobility causes slow and fast fading
 - » Fast fading is often frequency selective
- For higher speeds the Doppler effect can be a concern

24

Peter A. Steenkiste