

18-452/18-750
Wireless Networks and Applications
Lecture 4: Physical Layer -
Channel Capacity and Antennas

Peter Steenkiste
Carnegie Mellon University

Fall Semester 2018

<http://www.cs.cmu.edu/~prs/wirelessF18/>

Peter A. Steenkiste

1

Outline

- RF introduction
- Modulation and multiplexing
- Channel capacity
- **Antennas and signal propagation**
 - » How do antennas work
 - » Propagation properties of RF signals
 - » Modeling the channel
- Equalization and diversity
- Modulation and coding
- Spectrum access

Peter A. Steenkiste

2

What is an Antenna?

- Conductor that carries an electrical signal and radiates an RF signal.
 - » The RF signal “is a copy of” the electrical signal in the conductor
- Also the inverse process: RF signals are “captured” by the antenna and create an electrical signal in the conductor.
 - » This signal can be interpreted (i.e. decoded)
- Efficiency of the antenna depends on its size, relative to the wavelength of the signal.
 - » E.g. quarter of a wavelength

Peter A. Steenkiste

3

Types of Antennas

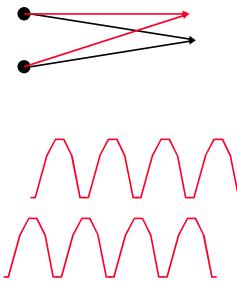
- Abstract view: antenna is a point source that radiates with the same power level in all directions – omni-directional or isotropic.
 - » Not common – shape of the conductor tends to create a specific radiation pattern
 - » Note that isotropic antennas are not very efficient!!
 - Unless you have a very large number of receivers
- Common shape is a straight conductor.
 - » Creates a “disk” pattern, e.g. dipole
- Shaped antennas can be used to direct the energy in a certain direction.
 - » Well-known case: a parabolic antenna
 - » Pringles boxes are cheaper

Peter A. Steenkiste

4

Antenna Types: Dipoles

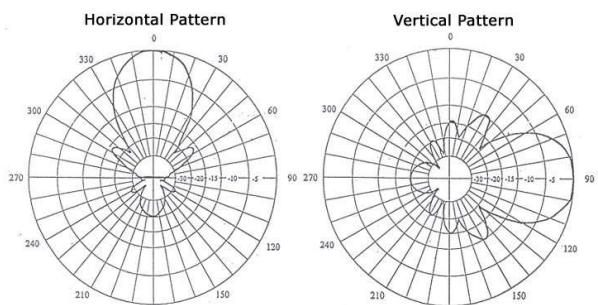
- Simplest: half-wave dipole and quarter wave vertical antennas
 - » Very simple and very common
 - » Elements are quarter wavelength of frequency that is transmitted most efficiently
 - » Donut shape
- May other designs



Peter A. Steenkiste

5

Multi-element Antennas


- Multi-element antennas have multiple, independently controlled conductors.
 - » Signal is the sum of the individual signals transmitted (or received) by each element
- Can electronically direct the RF signal by sending different versions of the signal to each element.
 - » For example, change the phase in two-element array.
- Covers a lot of different types of antennas.
 - » Number of elements, relative position of the elements, control over the signals, ...

Peter A. Steenkiste

6

Directional Antenna Properties

- dBi: antenna gain in dB relative to an isotropic antenna with the same power.
 - » Example: an 8 dBi Yagi antenna has a gain of a factor of 6.3 (8 db = 10 log 6.3)

Peter A. Steenkiste

7

Examples 2.4 GHz

Peter A. Steenkiste

8

Summary

- The maximum capacity of a channel depends on the SINR
 - » How close you get to this maximum depends on the sophistication of the radios
 - » Distortion of the signal also plays a role – next lecture
- Antennas are responsible for transmitting and receiving the EM signals
 - » The “ideal” isotropic antenna is a point source that radiates energy in a sphere
 - » Practical antennas are directional in nature, as a result of the antenna shape or the use of multi-element antennas
 - » The antenna gain is expressed in dBi

Peter A. Steenkiste

9

Outline

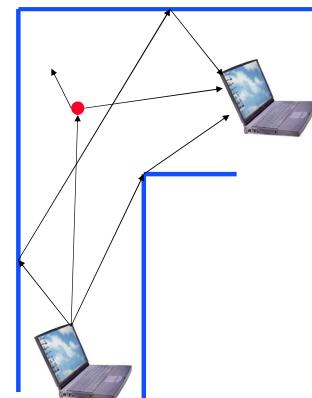
- RF introduction
- Modulation and multiplexing
- Channel capacity
- **Antennas and signal propagation**
 - » How do antennas work
 - » Propagation properties of RF signals
 - » Modeling the channel
- Modulation
- Diversity and coding
- OFDM

Peter A. Steenkiste

10

Propagation Modes

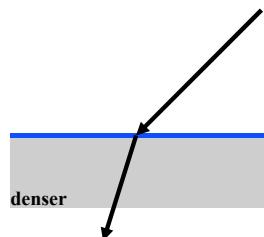
- Line-of-sight (LOS) propagation.
 - » Most common form of propagation
 - » Happens above ~ 30 MHz
 - » Subject to many forms of degradation (next set of slides)
- Obstacles can redirect the signal and create multiple copies that all reach the receiver
 - » Creates multi-path effects
- Refraction changes direction of the signal due to changes in density
 - » E.g., changes in air temperature, humidity, ...
 - » If the change in density is gradual, the signal bends!


Peter A. Steenkiste

11

Impact of Obstacles

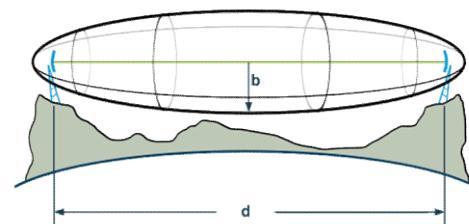
- Besides line of sight, signal can reach receiver in three “indirect” ways.
- **Reflection:** signal is reflected from a large object.
- **Diffraction:** signal is scattered by the edge of a large object – “bends”.
- **Scattering:** signal is scattered by an object that is small relative to the wavelength.


Peter A. Steenkiste

12

Refraction

- Speed of EM signals depends on the density of the material
 - » Vacuum: 3×10^8 m/sec
 - » Denser: slower
- Density is captured by refractive index
- Explains “bending” of signals in some environments
 - » E.g. sky wave propagation: Signal “bounces” off the ionosphere back to earth – can go very long distances
 - » But also local, small scale differences in the air density, temperature, etc.

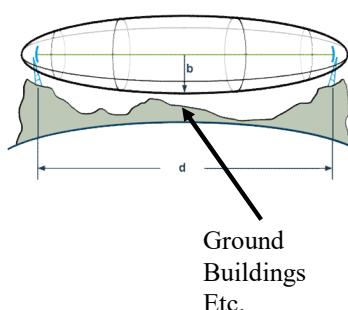


13

Peter A. Steenkiste

Fresnel Zones

- Sequence of ellipsoids centered around the LOS path between a transmitter and receiver
- The zones identify areas in which obstacles will have different impact on the signal propagation
 - » Capture the constructive and destructive interference due to multipath caused by obstacles

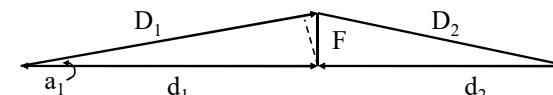


14

Peter A. Steenkiste

Fresnel Zones

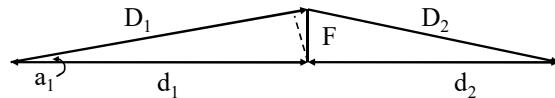
- Zones create different phase differences between paths
 - » First zone: 0-90
 - » Second zone: 90-270
 - » Third zone: 270-450
 - » Etc.
- Odd zones create constructive interference, even zones destructive
- Also want clear path in most of the first Fresnel zone, e.g. 60%
- The radius F_n of the nth Fresnel zone depends on the distances d_1 and d_2 to the transmitter and receiver and the wavelength



15

Peter A. Steenkiste

Sketch of Calculation: Difference in Path Length


- Difference in path length (a_1 is small)
 - » $D_1 - d_1 \approx F \cdot \sin a_1$
 - But for small a_1 we also have
 - » $\sin a_1 = \tan a_1 = F / d_1$
 - So $D_1 - d_1 = F^2 / d_1$

16

Peter A. Steenkiste

Sketch of Calculation Fresnel Radios

- Given $D_1 - d_1 = F^2 / d_1$
- and $(D_1 + D_2) - (d_1 + d_2) = \lambda * n$
- $(D_1 - d_1) + (D_2 - d_2) = F^2 / d_1 + F^2 / d_2$
- or

$$F_n = \sqrt{\frac{n\lambda d_1 d_2}{d_1 + d_2}}$$