

18-452/18-750
Wireless Networks and Applications
Lecture 22: RFID and NFC

Peter Steenkiste
CS and ECE, Carnegie Mellon University

Fall Semester 2018
<http://www.cs.cmu.edu/~prs/wirelessF18/>

Peter A. Steenkiste, CMU

1

Plan, outline

- RFIDs
 - » Concept and applications
 - » EPC and backend processing
 - » PHY and MAC
 - » Security
- Near Field Communication

Peter A. Steenkiste, CMU

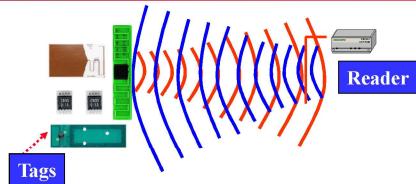
3

Surveys and Schedule

- Surveys: most surveys looked good
- Most common comments:
 - » Not enough technical depth
 - » Too much/not enough material on slides
 - » Balance introduction versus material from papers
- For the survey talk:
 - » Each team member should talk
 - » Practice for length
 - » Don't rush through the slides
- Schedule: some options ...

Peter A. Steenkiste, CMU

2


What is RFID ?

- Radio Frequency IDentification (RFID) is a method of remotely storing and retrieving data using devices called RFID tags and RFID Readers
- An enabling technology with many applications
 - » Data can be stored and retrieved from the tag automatically with a Reader
 - » Tags can be read in bulk
 - » Tags can be read without line of sight restrictions
 - » Tags can be write once read many (WORM) or rewritable
 - » Tags can require Reader authentication before exchanging data
 - » Other sensors can be combined with RFID
- Technology has been around for a long time
- Also has critics, e.g. privacy concerns

Peter A. Steenkiste, CMU

4

How Does It Work?

How does it operate?

- RFID tags are affixed to objects and stored information may be written and rewritten to an embedded chip in the tag
- Tags can be read remotely when they receive a radio frequency signal from a reader and use the energy to respond
- Can operate over a range of distances
- Readers display tag information or send it over the network to back-end systems

Peter A. Steenkiste, CMU

5

What is RFID?

- A means of identifying a unique object or person using a radio frequency transmission
- Tags (or transponders) store information, that can be retrieved wirelessly in an automated fashion
- Readers (or interrogators), either stationary and handheld, can read/write information from/to the tags

Applications

Operational Efficiencies

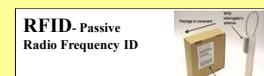
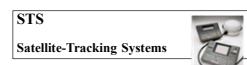
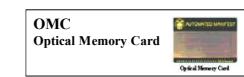
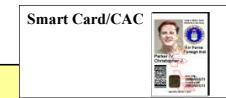
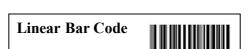
- » Shipping and Receiving
- » Warehouse management
- » Distribution
- » Asset management

Shrinkage, counterfeit

- » Reduce internal theft
- » Reduce process errors
- » Avoid defensive merchandizing
- » Product verification
- » Origin, transit verification

Total Supply Chain Visibility

- » Inventory visibility in warehouses
- » In-transit visibility, asset tracking
- » Pallet, case level
- » Item, instance level






Security, Regulations

- » Total asset tracking
- » Defense supplies
- » Container tampering
- » Animal Tracking

6

Peter A. Steenkiste, CMU

Automated Identification Technology Suite

Peter A. Steenkiste, CMU

7

RF ID Types

Passive Tags: rely on an external energy source to transmit

- » In the form of a reader that transmits energy
- » Relative short range
- » Very cheap

Active Tags: have a battery to transmit

- » Has longer transmission range
- » Can initiate transmissions and transmit more information
- » A bit more like a sensor

Battery Assisted Passive tags are a hybrid

- » Have a battery transmit
- » But need to be woken up by an external source

8

Peter A. Steenkiste, CMU

A Bit of History

- Early technology was developed in the 40s
 - » Originally used as eaves dropping devices
 - » Used reflected power to transmit (transponder), e.g. the membrane of a microphone
- First RF IDs were developed in the 70s
 - » Combines transmission based on reflected energy with information in memory – can now distinguish devices
- Dramatic growth in last decade as a result of mandates
 - » Big organizations (DOD, Walmart) requiring the use of RFIDs from their vendors for easy inventory control
- Now used in increasingly larger set of applications

Peter A. Steenkiste, CMU

9

Standards

- Passive tags operate in the LF, HF, and UHF unlicensed spectrum
 - 30-300 KHz, 3-30 MHz, 300-3000 MHz
 - Distance drop with frequency
- Transmission consists of a bit stream and CRC
- Many standards exist, mostly incompatible
 - » Early standards mostly defined by the ISO
 - » Widely used standard: ISO/IEC14443
- In 2003 EPCGlobal was formed to promote RFID standards
 - » Defined a standard for the Electronic Product Code (EPC)
 - » Also defined standards for coding and modulation

Peter A. Steenkiste, CMU

10

Primary Application Types

Identification and Localization

- Readers monitoring entering and exiting a closed region
 - » Security (RFID in identification cards)
 - » Merchandise in stores
 - » NFC in phones
- Readers tracking an RFID-tagged object
 - » business process monitoring (RFID tags on pallets)
- Tags marking a spatial location
 - » an NFC enabled mobile phone passes tags in the infrastructure whose location is known

Peter A. Steenkiste, CMU

11

Example: Smart Card

Public transport system in Singapore

- FeliCa Smart Card
- 2001 – 2009
- faster boarding times
- Other uses
 - small payments retail
 - identification
- Replaced by contactless card (RFID)

Peter A. Steenkiste, CMU

12

How Smart are RFIDs?

- Basic tags simply reply with a fixed bit string – “read” the tag
 - » “I am Groot”
 - » Already useful!
- We can now add functionality
 - » Changing the state on the tag – “write”
 - E.g., keep track of a balance
 - » Privacy and security: encryption, access control, ...
 - E.g., different parties and read and write the tag
 - » Add computing capabilities (more general than crypto)
- Next step is processors that operate entirely based on harvested ambient energy
 - » Vibrations, RF, solar, ...

Peter A. Steenkiste, CMU

13

Example “Oyster” Card

- Balance is maintained on the card
 - » Cryptographically secured
- The “reader” updates the balance as you enter/leave the metro station
 - » Enter: record when and where you boarded
 - » Leave: update balance on the card
 - » These operations are local
- Readers record all trips and periodically send information to servers
 - » Auditing trail, lost cards, etc.
 - » Riders can check their balance online

Peter A. Steenkiste, CMU

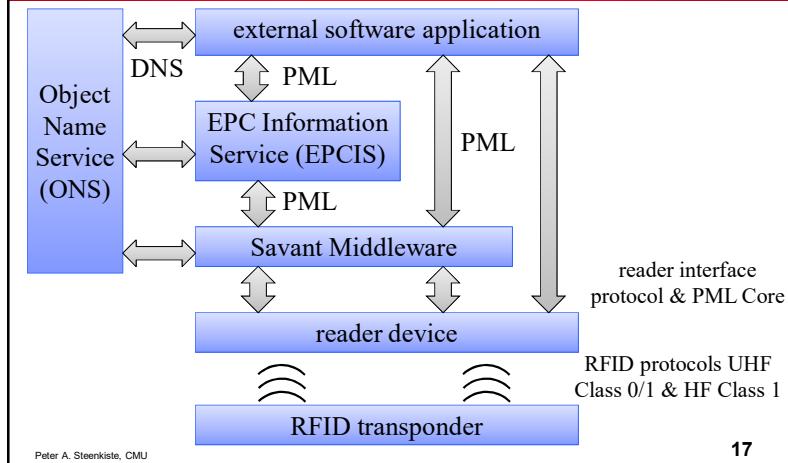
14

Plan, outline

- RFIDs
 - » Concept and applications
 - » EPC and backend processing
 - » PHY and MAC
 - » Security
- Near Field Communication

Peter A. Steenkiste, CMU

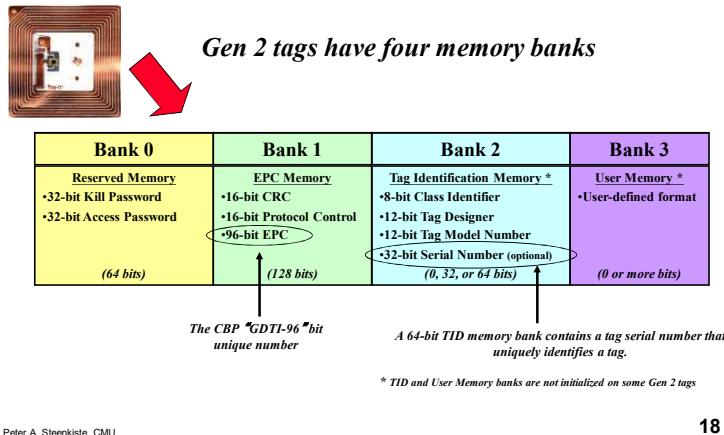
15


Electronic Product Code (EPC)

- “A Universal identifier for physical objects”
 - » EPC is designed to be unique across all physical objects in the world, over all time, and across all categories of physical objects.
 - » It is expressly intended for use by business applications that need to track all categories of physical objects, whatever they may be.
 - » `urn:epc:id:sgtin:0614141.012345.6285210cc Syringe #62852` (trade item)
- Combine
 - » EPC data located on the RFID tag
 - » reader’s middleware
 - » locate EPC Information Services (EPCIS), using Web Services like SOAP and WSDL

Peter A. Steenkiste, CMU

16


EPC Network Concept (2001)

Peter A. Steenkiste, CMU

17

What information does an RFID tag contain?

Peter A. Steenkiste, CMU

18

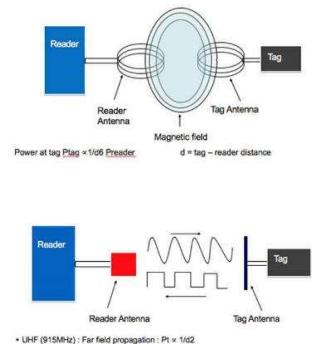
Passive RFID Tags

- **Power supply**
 - » passive: no on-board power source, transmission power from signal of the interrogating reader
 - » semi-passive: batteries power the circuitry during interrogation
 - » active: batteries power transmissions (can initiate communication, ranges of 100m and more, 20\$ or more)
- **Frequencies**
 - » low frequency (LF): 124kHz – 135 kHz, read range ~50cm
 - » high frequency (HF): 13.56 MHz, read range ~1m
 - » ultra high-frequency (UHF): 860 MHz – 960 MHz (some also in 2.45GHz), range > 10m

Peter A. Steenkiste, CMU

19

Standards

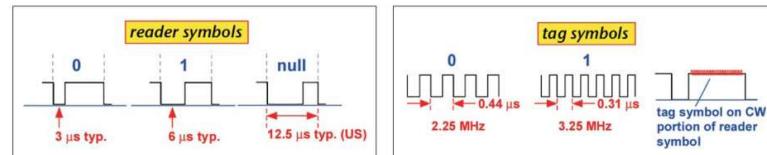

- **ISO 18000: multipart standard for protocols in LF, HF, and UHF bands**
- **For example, HF:**
 - » ISO 14443 (A and B) for "proximity" RFID
 - » ISO 15693 for "vicinity" RFID (basis for ISO 18000 part 3)
- **Two classes:**
 - » Class 0: read only
 - » Class 1: read/write, can for example be used for tracking
- **Many more standards exist!**

Peter A. Steenkiste, CMU

21

Transmission methods

- **LF and HF: inductive coupling**
 - » Coil in the reader antenna and a coil in the tag antenna form an electromagnetic field
 - » Tag changes the electric load on the antenna.
- **UHF: propagation coupling: backscatter**
 - » Tag gathers energy from the reader antenna
 - » Microchip uses the energy to change the load on the antenna and reflect back an altered signal
 - » Different modulations used by reader and tag


Peter A. Steenkiste, CMU

From: http://www.highfrequencyelectronics.com/Archives/Aug05/HF0805_RFIDTutorial.pdf
<https://rfid4u.com/rfid-basics-resources/inductive-and-backscatter-coupling/>

22

PHY Layer

- Depends on the frequency band used
- Different modulations used by reader and tag
 - » Different constraints, e.g. power and complexity
 - » E.g. cannot use amplitude modulation for HF tag (why?)
- Example of EPCGlobal symbols for UHF

Peter A. Steenkiste, CMU

From: http://www.highfrequencyelectronics.com/Archives/Aug05/HF0805_RFIDTutorial.pdf

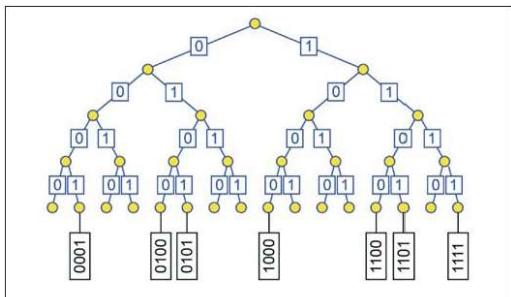
23

What does an RFID tag look like inside a card?

Peter A. Steenkiste, CMU

24

MAC Layer


- Typically assumed that only one reader is present, i.e. no need for MAC on the reader
- MAC for tags is a challenge: very high concentrations of tags are present in many contexts
 - » And tags are dumb, i.e. cannot have sophisticated protocols
- Two types of schemes used (standard):
 - » Binary tree resolution: reader explores a tree of relevant tag values
 - » Aloha: tags transmit with a random backoff

Peter A. Steenkiste, CMU

25

Binary Tree Resolution

- Send requests to tags with ids that start with a certain string
- Narrow down search until one tag responds

26

Peter A. Steenkiste, CMU

General Security Concerns

- RFID tags raise a number of security concerns:
 - » Privacy risks, e.g., eavesdropping
 - » Cloning and forging of tags
- Specific disadvantages due to tag limitations
 - » Encryption algorithms are too complex to be implemented on tags
- But also specific advantages:
 - » Tags are slow to respond, maximum no. of read-out operations
 - » Adversary has to be physically close

27

Peter A. Steenkiste, CMU

Privacy Concerns

- Tracking
 - » Depends only on unique id (even if random)
 - » Today:
 - automated toll-payment transponders
 - loyalty cards
 - » Future: pervasive availability of readers
- Inventorying
 - » Invisible items become visible
 - » Libraries
 - » Passports
 - » Human implants: VeriChip
 - Medical record indexing
 - Physical access control

28

Peter A. Steenkiste, CMU

Privacy for Business Networks

- Major concern for industry:
 - » Supply chain visibility
 - » Supply chains and business networks are business assets
- Example provenance checking: competitors may be able to get a lot of information
 - » Depending on how detailed the information associated is:
 - Where an object and its parts were manufactured
 - When it was manufactured
 - By which sub-contractors
 - » Who are the suppliers of a company
 - » Which companies are the customers of a company

29

Peter A. Steenkiste, CMU

Reading Ranges

- Controlling reading range can limit privacy risk
- Nominal read range (RFID standards and product specifications):
 - » 10cm for contactless smartcards (ISO 14443)
- Rogue scanning range: sensitive reader with more powerful antenna or antenna array
 - » 50cm
- Tag-to-reader eavesdropping range: need to power the tag limits range for passive RFIDs
 - » Eavesdropping on communication while another reader is powering the smartcard: > 50cm
- Reader-to-tag eavesdropping: readers transmit at much higher power

Peter A. Steenkiste, CMU

30

Use for Authentication

- RFID tags uniquely identify objects
- Many proposals to use tags for authentication
 - » Passport or driver's licence
 - » Identification of stolen goods
- Counterfeiting attack
 - » Scanning and replicating tags
- Possible options
 - » EPC:
 - Simple bitstring
 - No access-control
 - » VeriSign:
 - Digital signing
 - Against forging but not cloning

Peter A. Steenkiste, CMU

31

Plan, outline

- RFIDs
 - » Concept and applications
 - » EPC and backend processing
 - » PHY and MAC
 - » Security
- Near Field Communication

Peter A. Steenkiste, CMU

32

Near Field Communication (NFC)

- One device combines the functionality of
 - » An RFID reader device
 - » An RFID transponder (tag)
 - » Bit rates ranging from 106 Kbs to 424 Kbs
- Integral part of mobile devices (e.g. mobile phones). NFC components can be accessed by software to
- Operates at 13.56 MHz (High frequency band) and is compatible to international standards:
 - » ISO/IEC 18092 (also referred to as NFCIP-1),
 - » ISO/IEC 14443 (smart card technology, "proximity coupling devices")
 - » ISO/IEC 15693 ("vicinity coupling devices").
- Use of NFC is growing fast
 - » Driven by NFC Forum (founded by Nokia, Philips, and Sony in 2004)
 - » <http://www.nfcworld.com/nfc-phones-list/#available>

Peter A. Steenkiste, CMU

33

NFC Devices

Modes of operation

- Smart Card emulation (ISO 14443):
 - » Phone can act as a contactless credit card
 - » Information can be generated rather than pre-stored
- Reader mode
 - » Allows NFC devices to access data from an object with an embedded RFID tag
 - » Enables the user to initiate data services, i.e., retrieval of rich content, advertisements, ..
- Peer-to-peer (ISO 18092)
 - » Allows two way communication between NFC devices
 - » NFC can act as smart tag, i.e., generates information

Example: contactless payment applications

Sony FeliCa, Asia
MIFARE, Europe
Google Wallet

(c) Google

34

Peter A. Steenkiste, CMU

Active and Passive Communication Modes

- **Passive communication: one device acts as a reader and the other as a tag**
 - » Reader generates a field while the other responds
 - » The second device can be a tag or another NFC device
- **Active communication: both devices alternatively act as readers**
 - » Allows fairly general two way communication
 - » Both devices must have a battery
- **Since NFC devices can read and write, they must check for collisions**
 - » Compare received signal with transmitted signal

Peter A. Steenkiste, CMU

35

Comparison: Main Applications

RFID

- Retail
- Logistics
- Supply chain management
 - » accurate inventories
 - » product safety and quality

NFC

- Mobile payment
- Mobile ticketing
- Pairing of devices (esp. Bluetooth devices)
- Download of information from "smart posters"

Peter A. Steenkiste, CMU

36