

18-452/18-750
Wireless Networks and Applications
Lecture 13: Wireless LAN
802.11 Standards

Peter Steenkiste

Fall Semester 2018

<http://www.cs.cmu.edu/~prs/wirelessF18/>

Peter A. Steenkiste, CMU

1

Outline

- Brief history
- 802 protocol overview
- Wireless LANs – 802.11 – overview
- 802.11 MAC, frame format, operations
- 802.11 management
- 802.11 security
- 802.11 power control
- 802.11*
- 802.11 QoS

Peter A. Steenkiste, CMU

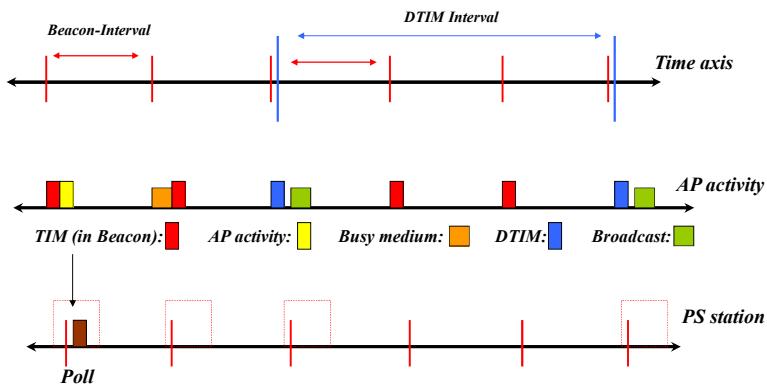
2

Power Management

- Goal is to enhance battery life of the stations
- Idle receive state dominates LAN adapter power consumption over time
- Allow stations to power off their NIC while still maintaining an active session
- Different protocols are used for infrastructure and independent BSS
 - » Our focus is on infrastructure mode

Peter A. Steenkiste, CMU

3


Power Management Approach

- Idle station to go to sleep
- AP keeps track of stations in Power Savings mode and buffers their packets
 - » Traffic Indication Map (TIM) is included in beacons to inform which power-save stations have packets waiting at the AP
- Power Saving stations wake up periodically and listen for beacons
 - » If they have data waiting, they can send a PS-Poll to request that the AP sends their packets
- TSF assures AP and stations are synchronized
 - » Synchronizes clocks of the nodes in the BSS
- Broadcast/multicast frames are also buffered at AP
 - » Sent after beacons that includes Delivery Traffic Indication Map (DTIM)
 - » AP controls DTIM interval

Peter A. Steenkiste, CMU

4

Infrastructure Power Management Operation

Peter A. Steenkiste, CMU

5

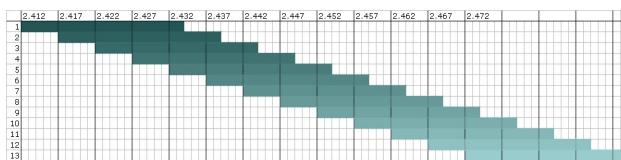
Some IEEE 802.11 Standards

- » IEEE 802.11a
 - PHY Standard : 8 channels : up to 54 Mbps : some deployment
- » IEEE 802.11b
 - PHY Standard : 3 channels : up to 11 Mbps : widely deployed.
- » IEEE 802.11d
 - MAC Standard : support for multiple regulatory domains (countries)
- » IEEE 802.11e
 - MAC Standard : QoS support : supported by many vendors
- » IEEE 802.11f
 - Inter-Access Point Protocol : deployed
- » IEEE 802.11g
 - PHY Standard: 3 channels : OFDM and PBCC : widely deployed (as b/g)
- » IEEE 802.11h
 - Suppl. MAC Standard: spectrum managed 802.11a (TPC, DFS): standard
- » IEEE 802.11i
 - Suppl. MAC Standard: Alternative WEP : standard
- » IEEE 802.11n
 - MAC Standard: MIMO : standardization expected late 2008

Peter A. Steenkiste, CMU

6

IEEE 802.11 Family


Protocol	Release Data	Freq.	Rate (typical)	Rate (max)	Range (indoor)
Legacy	1997	2.4 GHz	1 Mbps	2Mbps	?
802.11a	1999	5 GHz	25 Mbps	54 Mbps	~30 m
802.11b	1999	2.4 GHz	6.5 Mbps	11 Mbps	~30 m
802.11g	2003	2.4 GHz	25 Mbps	54 Mbps	~30 m
802.11n	2008	2.4/5 GHz	200 Mbps	600 Mbps	~50 m

Peter A. Steenkiste, CMU

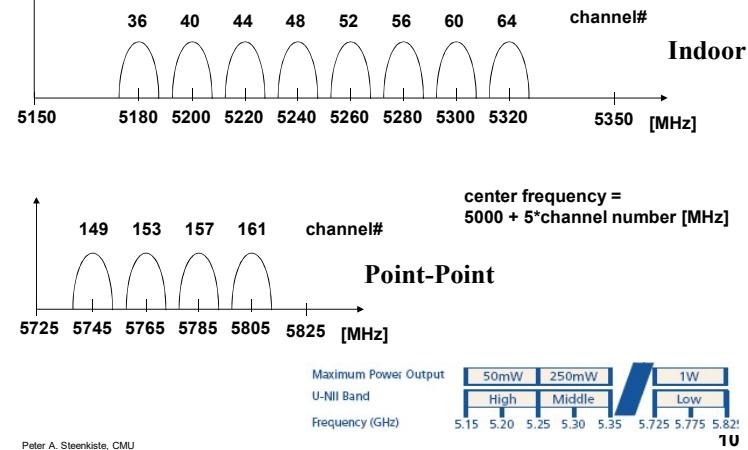
7

802.11b Channels

- In the UK and most of EU: 13 channels, 5MHz apart, 2.412 – 2.472 GHz
- In the US: only 11 channels
- Each channel is 22MHz
- Significant overlap
- Non-overlapping channels are 1, 6 and 11

Peter A. Steenkiste, CMU

8


802.11b Physical Layer

- FHSS (legacy)
 - » 2 & 4 GFSK
 - » Using one of 78 hop sequences, hop to a new 1MHz channel (out of the total of 79 channels) at least every 400milliseconds
- DSSS (802.11b)
 - » DBPSK & DQPSK
 - » Uses one of 11 overlapping channels (22 MHz)
 - » 1 and 2 Mbps: multiply the data by an 11-chip spreading code (Barker sequence)
 - » 5.5 and 11 Mbps: uses Complementary Code Keying (CCK) to generate spreading sequences that support the higher data rates
 - Spreading code is calculated based on the data bits

Peter A. Steenkiste, CMU

9

802.11a Physical Channels

Peter A. Steenkiste, CMU

10

802.11a Modulation

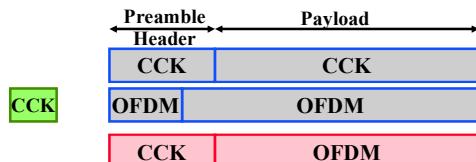
- Use OFDM to divide each physical channel (20 MHz) into 52 subcarriers (20M/64=312.5 KHz each)
 - » 48 data, 4 pilot

- Adaptive modulation
 - » BPSK: 6, 9 Mbps
 - » QPSK: 12, 18 Mbps
 - » 16-QAM: 24, 36 Mbps
 - » 64-QAM: 48, 54 Mbps

Peter A. Steenkiste, CMU

11

802.11a Discussion


- Uses OFDM in the 5 GHz band
 - » Also used by 802.11g in 2.4 GHz (next slides)
- What are the benefits of 802.11a compared with 802.11b/g?
 - » Greater bandwidth (up to 54Mb)
 - 54, 48, 36, 24, 18, 12, 9 and 6 Mbs
 - 802.11g (next slide) offers same benefit
 - » Less potential interference (5GHz)
 - » More non-overlapping channels
- But it does not provide interoperability with 802.11b, as 802.11g does
 - » Cannot fall back to lower rates (not an issue in practice)
 - » Cards typically support a and g

Peter A. Steenkiste, CMU

12

Interoperability 802.11b and 802.11g

- 802.11g is the same as 802.11a, but in 2.4GHz band
 - » Falls back to 802.11b for the lower rates (1,2, 5.5, 11 MHz)
 - » Uses 802.11a OFDM technology for new rates (6 Mbs and up)
- Creates an interoperability problem since 802.11b cards cannot interpret OFDM signals
 - » Interoperability mode: protection mechanism in hybrid environment: Send CCK CTS before OFDM packets or use(optional) hybrid packet
 - » Can also run an 802.11n only network – reduces overhead

Peter A. Steenkiste, CMU

13

Spectrum and Transmit Power Management Extensions (802.11h)

- Support 802.11 operation in 5 GHz band in Europe: coexistence with primary users
 - » Radar: cannot use bands if a radar is nearby
 - Allows opening up 11 more bands in 5 GHz band
 - » Satellite: limit power to 3dB below regulatory limit
- Dynamic Frequency Selection (DFS)
 - » Detect primary users and adapt
 - » AP notifies stations to switch channel at some point in time
- Transmit Power Control (TPC)
 - » Goal is to limit interference – also controlled by AP
- DFS and TPC have broader uses such as range and interference control, reduced energy consumption, automatic frequency planning, load balancing, ..

Peter A. Steenkiste, CMU

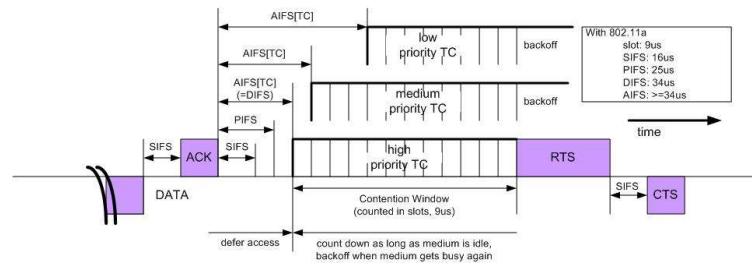
14

IEEE 802.11e

- Original intent was that 802.11 PCF could be used to provide QoS guarantees
 - » Scheduler in the PCF prioritizes urgent traffic
 - » But: overhead, “guarantees” are very soft
- 802.11e Enhanced Distributed Coordination Function (EDCF) is supposed to fix this.
 - » Provides Hybrid Coordination Function (HCF) that combines aspects of PCF and DCF
- EDCF supports 4 Access Categories
 - » AC_BK (or AC0) for Back-ground traffic
 - » AC_BE (or AC1) for Best-Effort traffic
 - » AC_VI (or AC2) for Video traffic
 - » AC_VO (or AC3) for Voice traffic

Peter A. Steenkiste, CMU

15

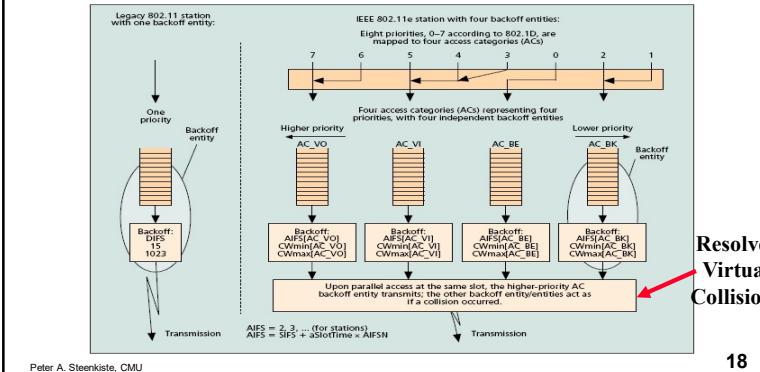

Service Differentiation Mechanisms in EDCF

- The two types of service differentiation mechanisms proposed in EDCF are:
- **Arbitrate Inter-frame Space (AIFS) Differentiation**
 - Different AIFSs instead of the constant distributed IFS (DIFS) used in DCF.
 - Back-off counter is selected from $[1, \text{CW}[\text{AC}]+1]$ instead of $[0, \text{CW}]$ as in DCF.
- **Contention Window (CWmin) Differentiation**
 - Different values for the minimum/maximum CWs to be used for the back-off time extraction.

Peter A. Steenkiste, CMU

16

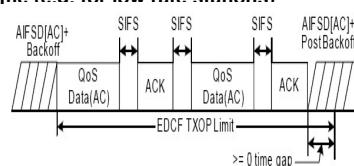
IEEE 802.11e: Priorities



Peter A. Steenkiste, CMU

17

Mapping different priority frames to different AC


- Each frame arriving at the MAC with a priority is mapped into an AC as shown in figure below.

18

Other 802.11 MAC Improvements

- TXOP- Transmission opportunity (TXOP)** is an interval of time during which a back-off entity has the right to deliver multiple MSDUs.
 - A TXOP is defined by its starting time and duration
 - Announced using a traffic specification (length, period)
 - Can give more transmission opportunities to a station
 - Can also limit transmission time (e.g. for low rate stations)
- CFB- In a single TXOP, multiple MSDUs can be transmitted.**
 - “Contention Free Burst” (CFB)
 - Can use a block acknowledgement

Peter A. Steenkiste, CMU

19

802.11p: Vehicular Networking

- Basis for Dedicated Short Range Communication (DSRC)**
 - Connecting vehicles and road side units
 - Dedicated band at 5.9 GHz
 - Higher layers of protocol stack defined by WAVE
 - Primary driver is vehicular safety such as reporting accidents, ..
- Differences with 802.11a**
 - Channels are 10 MHz wide; this means that symbol times are twice as long (more robust to ISI)
 - Communication is between stations that are not associated or authenticated (no BSS ID)

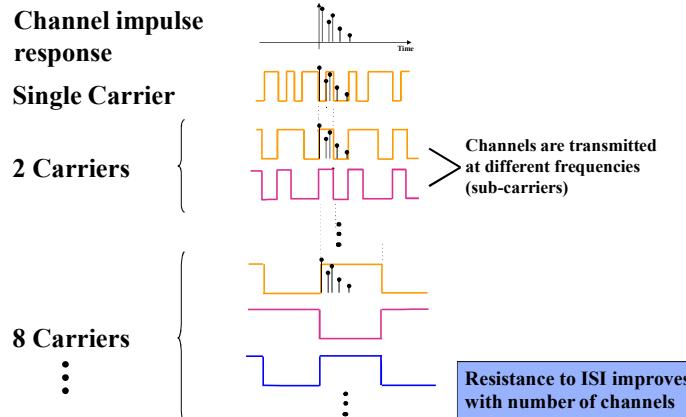
Peter A. Steenkiste, CMU

20

OFDM Q & A

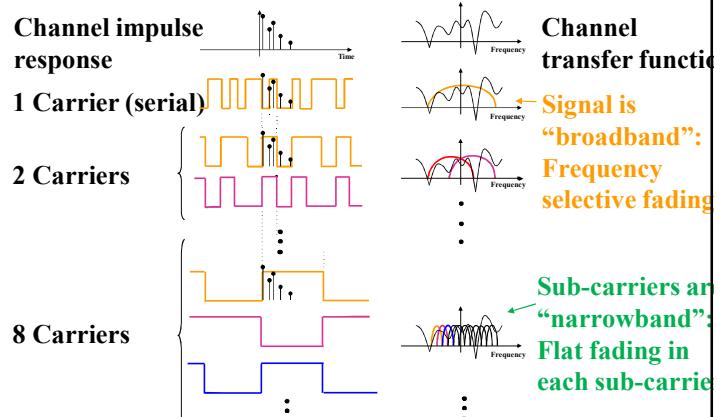
Peter A. Steenkiste, CMU

21

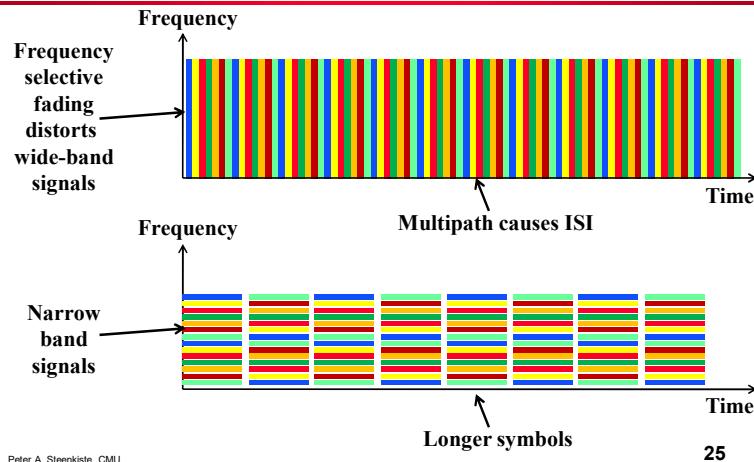

How Do We Increase Rates?

- Two challenges related to multipath:
- Frequency selective fading starts to have a bigger impact because there is less redundancy in the signal
 - » This is major issue for wide-band channels only
- As rates increase, symbol times shrink and the effects of inter-symbol interference becomes more pronounced
 - » There is a limit on how much we can shrink symbol times
- We need an encoding/modulation solution that has long symbol times and limits the impact of frequency selective fading

Peter A. Steenkiste, CMU

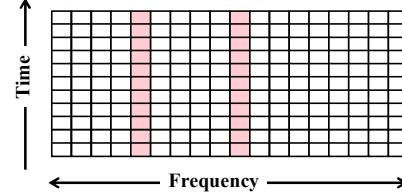

22

Distributing Bits over Subcarriers


Peter A. Steenkiste, CMU

Benefits of Narrow Band Channels

Peter A. Steenkiste, CMU


OFDM Transmission

Peter A. Steenkiste, CMU

Use of Redundancy in OFDM

- OFDM uses error coding as described earlier
 - » Degree of error coding depends on channel conditions
- OFDM offers frequency and diversity
 - » Frequency: data is spread out over multiple subcarriers
 - » Time: data spread out over multiple time slots

- Combining OFDM with MIMO adds space diversity (discussed later in course)

26

Peter A. Steenkiste, CMU