
1

18544: Network Design
and Evaluation

Core Components Review
and Using Hardware

Sept 19, 2006

2

Agenda
Core Component Programming

Memory management
Patching symbols
Exchanging Packets

Using Hardware
Building the core
Booting up the application

3

Structure of a Core Component

4

Memory Management [1]
Memory used by core components
managed using malloc and free
Resource Manager manages memory
accessed by the microengines
To allocate memory from the Intel XScale
core using Resource Manager
IX_EXPORT_FUNCTION ix_error

ix_rm_mem_alloc(
ix_memory_type arg_MemType,
ix_uint32 arg_MemChannel,
ix_uint32 arg_Size,
void** arg_pMemoryAddr);

5

Memory Management [2]
Address microengines use may be
different than Intel XScale core
For example, if you want to give an
address returned by ix_rm_mem_alloc to
the microengines, convert it to an address
which can be used by microengines using
ix_rm_get_phys_offset function

Also tells the memory type and channel if
required

Trace code

6

Patching Load-time Constants [1]
A way of communication between the
XScale core and microengines
Used in patching memory locations
determined when the core component is
initialized

The values of these constants are not known
at compile time, but rather are determined at
the code loading time
The values cannot be changed once they are
set (can be only changed by stopping and
reloading the microengines)

7

Patching Load-time Constants [2]
Signature of load-time constants:
IX_EXPORT_FUNCTION ix_error

ix_rm_ueng_patch_symbols(
ix_uint32 arg_MENumber,
ix_uint32 arg_SymbolsNumber,
const ix_imported_symbol
arg_aSymbols[]);

In microengine assembly code:
.import_var ETHERNET_SYMBOL_NAME

or in microengine C:
int ETHERNET_DATA =

LoadTimeConstant (“ETHERNET_SYMBOL_NAME”);

Trace code

8

Example
//Allocate shared memory for the control block
err = ix_rm_mem_alloc(IX_MEMORY_TYPE_SRAM,

channel, sizeof(ethernet_control_block),
(void**)eth_context->control_block);

if (err != IX_SUCCESS)
// error handling

err = ix_rm_get_phys_offset(eth_context-
>control_block, NULL, NULL, NULL,
&control_block_phys);

if (err != IX_SUCCESS)
// error handling

9

Example (Cont.)
//Now patch the control block symbol for all
//of the microengines on which Ethernet
//microblocks will run
for (i = 0; i < sizeof(me_numbers); i++) {

ix_imported_symbol symbol;
symbol.m_value = (ix_uint32)
control_block_phys;
symbol.m_name = ETHERNET_SYMBOL_NAME;
err = ix_rm_ueng_patch_symbols(i, 1, &symbol);
if (err != IX_SUCCESS)
//error handling

}

10

Packet Handling
The XScale Core handles infrequently -
arriving packet types that require more
complicated processing

Control and configuration packets
Routing update packets

Packets requiring lengthy processing
IP packets with options

Correcting erroneous conditions
Sending ICMP packets

Other packets not handled by microblocks

11

Packet Handling: MB CC [1]
The core component needs to register the
packet handler routines
The signature of the handler function:
ix_error (* ix_pkt_handler) (
ix_buffer_handle arg_hDataToken,
ix_uint32 arg_ExceptionCode,
void* arg_pComponentContext)

12

Packet Handling: MB CC [2]
Use ix_cci_cc_add_packet_handler to
register the handler in the core:
ix_error
ix_cci_cc_add_packet_handler(
ix_cc_handle arg_hComponent,
ix_uint32 arg_InputID,
ix_pkt_handler arg_Handler,
ix_input_type arg_SourceType);

Trace code

13

Packet Handling: MB CC [3]
When microblock wants to send packets to
its core component:

it sets the next block value to the unique packet
handler identifier (i.e. Input ID)
The microblock can also set a 32-bit exception
code

Trace code

14

Packet Handling: MB CC [4]
The following microengine C code sends
packet to the Ethernet core component:

// If the entry is not valid, drop this
packet
if(!table_entry.valid) {

dl_set_exception(ETHERNET_EXCEPTION_ID,0);
dlNextBlock = IX_EXCEPTION;
return;

}

Dispatch loop will catch this packet
and notify the core

Exception
code

ID of the calling microblock
(mapping to arg_InputID in
ix_cci_cc_add_packet_handler)

Good Reference: IAX Framework Development Manual

15

Packet Handling: CC MB [1]
Core components can send packets to
microblocks or other core components
using the following API:
ix_error ix_rm_packet_send(
ix_communication_id

arg_CommunicationId,
ix_buffer_handle arg_MessageBuffer,
ix_uint32 arg_UserData);

The dl_source macro polls the scratch ring
to retrieve the packet.

Destination
Microblock ID

16

Using the Hardware

17

Network Setup: Physical Layout

18

Network Setup (Cont.)
Linux hosts (the black boxes) connected
to the ENP-2611 board to form a teaching
Network
Radisys ENP-2611 board

Hosted by one of the Linux machines
Carries the Intel IXP 2400 Network Processor
3 fiber ports to connect to the hosts (see the
back of the black box hosting the board)
Runs embedded Linux on XScale processor

Windows machine connected to the ENP-
2611 board via RS-232

19

Building the Core [1]
Download proj_544fall04_core.tar.gz from the
course site to /opt/ixa_sdk_3.5/src on the
Linux host. Untar the file using the command

tar xzvf proj_544fall04_core.tar.gz
Note: the code is already copied to the Linux host
by TAs so you can simply skip this step if no
change is made on the code.
Make sure that
/opt/hardhat/previewkit/arm/xscale_be/bin
is in your PATH. (Use echo $PATH in Bash Shell)

http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz

20

Build the Core [2]
On the Linux host, cd to the directory
/opt/ixa_sdk_3.5/src/applications/proj_544
fall04/ipv4_enp2611
Issue the command

make -f Makefile.linux_kernel
Note: to rebuild the code, issue the following
command before the above one:

make -f Makefile.linux_kernel clean
cd to the directory
/opt/hardhat/previewkit/arm/xscale_be/targ
et/opt/proj_544fall04/ipv4_enp2611
Issue the command

cp linux_kernel/xscale_be/ixp2400/debug/* .

21

Linux Host Configuration
Runs DHCP daemon

Allows auto configuration of the board via
crossover cable

Provides NFS service to give storage
access – board have no onboard disk

22

Getting things to work!
Run the script
/opt/ixp_scripts/host_startup.sh

This will bring up the DHCP daemon, TFTP
daemon, and the NFS service
Setup a HyperTerminal Session (Baud Rate:
57600, Flow Control: None) on the Windows
machine
Reset the ENP-2611 board (press “red” button
on the board)
Login as root through the HyperTerminal
session (no password required)

23

Running ipv4_enp2611 on the hardware
Compile the microengine code on the Windows
machine (set the preprocessor symbol to
USE_IMPORT_VAR and not SIMULATION)

Must use IXA SDK 3.5 for compilation
Can use IXA SDK 4.2 for simulation to utilize new features

Copy the microengine image ipv4_enp2611.uof to
the Linux host at
/opt/hardhat/previewkit/arm/xscale_be/target
/opt/proj_544fall04/ipv4_enp2611

Note: the ipv4_enp2611.uof file is already copied to
the Linux host by TAs so you can simply skip this
step if no change is made on the code.

24

Running ipv4_enp2611 on the hardware
On the ENP-2611 board, run the script
/root/init_script.sh
On each Linux machine, run
/opt/ixp_scripts/endsys_startup_X.sh (X=1 if
machine hosting ENP-2611 or X=2 otherwise)

25

PINGing the hosts
Now we should be able to PING across the
board
e.g. ping 10.x.0.1 (x=1,2,3 are the fiber
ports on the ENP-2611) ping 10.x.0.2
(x=1,2,3 are the host machines)

26

Lab Setup: Logical Layout
Windows

Host 1

Linux

10.3.0.1/24 10.3.0.2/2410.1.0.1/2410.1.0.2/24

10.2.0.1/24
txdev1

txdev2txdev0gig gig

192.168.0.2/24192.168.0.1/24
mngmt eth0

com1

ENP-2611

Gigabit Ethernet (Fiber)
Fast Ethernet
RS-232

Host 3

Linux

gig 10.23.0.2/24

Linux
Host 2

27

Quick Summary

Set IP addresses for the gigabit Eth I/F.
Initialize ARP/route tables on the hosts

Host: /opt/ixp_scripts/
endsys_startup_X.sh

Install loadable kernel modules (CCs)
Initialize IP address and ARP/route
tables on the board

ENP-2611:
/root/init_script.sh

ENP-2611 downloads the kernel image.
Start running the kernel.

Host & ENP-2611:
Doing TFTP

ENP-2611 gets IP, image filename, and
NFS mount directory

Host & ENP-2611:
Doing DHCP

Start DHCP/TFTP/NFS services on the
host

Host: /opt/ixp_scripts/
host_startup.sh

DescriptionAction (in sequence)

28

Where to Obtain the Code Base…
Microengine (WorkBench):
http://www.cs.cmu.edu/afs/andrew.cmu.e
du/course/18/544/dl/proj_544fall04.zip

Core Code Base (Linux):
http://www.cs.cmu.edu/afs/andrew.cmu.e
du/course/18/544/dl/proj_544fall04_core.
tar.gz

http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04.zip
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04.zip
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04.zip
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04.zip
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04_core.tar.gz

29

Questions?
It is recommended to use online
instructions posted on the course

website for setting up the hardware.

	18544: Network Design and Evaluation
	Agenda
	Structure of a Core Component
	Memory Management [1]
	Memory Management [2]
	Patching Load-time Constants [1]
	Patching Load-time Constants [2]
	Example
	Example (Cont.)
	Packet Handling
	Packet Handling: MB„ÃCC [1]
	Packet Handling: MB„ÃCC [2]
	Packet Handling: MB„ÃCC [3]
	Packet Handling: MB„ÃCC [4]
	Packet Handling: CC„ÃMB [1]
	Using the Hardware
	Network Setup: Physical Layout
	Network Setup (Cont.)
	Building the Core [1]
	Build the Core [2]
	Linux Host Configuration
	Getting things to work!
	Running ipv4_enp2611 on the hardware
	Running ipv4_enp2611 on the hardware
	PINGing the hosts
	Lab Setup: Logical Layout
	Quick Summary
	Where to Obtain the Code Base¡K
	Questions?

