18544: Network Design

and Evaluation

Core Components Review
and Using Hardware
Sept 19, 2006

Agenda

0 Core Component Programming
= Memory management
= Patching symbols
= Exchanging Packets

o Using Hardware
= Building the core
= Booting up the application

Structure ot a Core Component

Core Component

Memory Management |1]

o Memory used by core components
managed using malloc and free

O Resource Manager manages memory
accessed by the microengines

o To allocate memory from the Intel XScale
core using Resource Manager
IX EXPORT FUNCTION ix_error
1x rm mem alloc(

1x memory type arg MemType,
1X uilnt32 arg MemChannel,
1X uilnt32 arg Size,
volid** arg pMemoryAddr) ;

Memory Management |2]

0 Address microengines use may be
different than Intel XScale core

o For example, if you want to give an
address returned by ix rm mem alloc to
the microengines, convert it to an address

which can be used by microengines using
ix rm get phys offset function

o Also tells the memory type and channel if
required

Trace code

Patching [Load-time Constants [1]

o A way of communication between the
XScale core and microengines

o Used in patching memory locations
determined when the core component is
initialized

m The va
at com
the cod

ues of these constants are not known
dile time, but rather are determined at
e loading time

m The va

ues cannot be changed once they are

set (can be only changed by stopping and
reloading the microengines)

Patching Load-time Constants [2]

o Signature of load-time constants:

IX EXPORT FUNCTION 1x error
1X rm ueng patch symbols (
1X uint32 arg MENumber,

1X uilnt32 arg SymbolsNumber,

const 1x imported symbol
arg aSymbols[]);

o In microengine assembly code:
.import var ETHERNET SYMBOL NAME

or in microengine C:
int ETHERNET DATA =
LoadTimeConstant (“ETHERNET SYMBOL NAME”) ;

7

Trace code

Example

//Allocate shared memory for the control block

err = 1x rm mem alloc (IX MEMORY TYPE SRAM,
channel, sizeof (ethernet control block),
(void**)eth context->control block);

1f (err != IX SUCCESS)
// error handling

err = 1xX rm get phys offset(eth context-
>control block, NULL, NULL, NULL,
&control block phys);

1f (err != IX SUCCESS)
// error handling

Example (Cont.)

//Now patch the control block symbol for all

//of the microengines on which Ethernet

//microblocks will run

for (1 = 0; 1 < sizeof (me numbers); 1++) {
1xXx i1mported symbol symbol;

symbol.m value = (1x uilnt32)
control block phys;

symbol.m name = ETHERNET SYMBOL NAME;

err = 1xX rm ueng patch symbols (1, 1, &symbol);
1f (err != IX SUCCESS)

//error handling

Packet Handling

0 The XScale Core handles infrequently -
arriving packet types that require more
complicated processing

= Control and configuration packets
Routing update packets

m Packets requiring lengthy processing
IP packets with options

m Correcting erroneous conditions
Sending ICMP packets

= Other packets not handled by microblocks

Packet Handling: MB=CC [1]

0 The core component needs to register the
packet handler routines

o The signature of the handler function:
1Xx error (* ix pkt handler) (
1Xx buffer handle arg hDataToken,
1Xx uint32 arg ExceptionCode,

volid* arg pComponentContext)

11

Packet Handling: MB=CC [2]

oUse ix cci cc add packet handler to
register the handler in the core:

1X error
1X ccl cc add packet handler (

1X cc handle arg hComponent,

1Xx uint32 arg InputID,

1xXx pkt handler arg Handler,

1X 1nput type arg SourceType);

12

Trace code

Packet Handling: MB=CC [3]

o When microblock wants to send packets to
Iits core component:

= it sets the next block value to the unique packet
handler identifier (i.e. Input ID)

= The microblock can also set a 32-bit exception
code

Trace code

Packet Handling: MB=CC [4]

o The following microengine C code sends
packet to the Ethernet core component:

Exception

// If the entry 1s not valid, drop this code

packet /
1f (!table entry.valid) {
dl set exception (ETHERNET EXCEPTION ID,0);

dlNextBlock = IX EXCEPTION; \

return;
} ID of the calling microblock
(mapping to arg_InputID in

Dispatch loop will catch this packet ix_cci_cc_add_packet_handler)
and notify the core

Good Reference: IAX Framework Development Manual H

Packet Handling: CC=MB [1]}

o Core components can send packets to
microblocks or other core components
using the following API:

1X error 1x rm packet send Destination

ix communication id ///Nmmm“km
arg CommunicationlId,
1Xx buffer handle arg MessageBuffer,

1Xx uint32 arg UserData);

o The dl_source macro polls the scratch ring
to retrieve the packet.

15

Using the Hardware

Network Setup: Physical Layout

Network Setup (Cont.)

o Linux hosts (the black boxes) connected
to the ENP-2611 board to form a teaching
Network

o Radisys ENP-2611 board
= Hosted by one of the Linux machines

m Carries the Intel IXP 2400 Network Processor

= 3 fiber ports to connect to the hosts (see the
back of the black box hosting the board)

= Runs embedded Linux on XScale processor

o Windows machine connected to the ENP-
2611 board via RS-232

18

Building the Core [1]

o Download from the
course site to /opt/ixa sdk 3.5/src on the
Linux host. Untar the file using the command

tar xzvf proj 544fall04 core.tar.gz

Note: the code is already copied to the Linux host
by TAs so you can simply skip this step if no
change is made on the code.

0 Make sure that
/opt/hardhat/previewkit/arm/xscale be/bin
is in your PATH. (Use echo $PATH in Bash Shell)

19

http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz

Build the Core [2]

o On the Linux host, cd to the directory

/opt/ixa sdk 3.5/src/applications/proj 544
fallO04/ipv4 enp26ll

O Issue the command

make —-f Makefile.linux kernel

Note: to rebuild the code, issue the following
command before the above one:

make —-f Makefile.linux kernel clean

o cd to the directory

/opt/hardhat/previewkit/arm/xscale be/targ
et/opt/proj 544fall04/ipvd enp261l

O Issue the command
cp linux kernel/xscale be/ixp2400/debug/* .,

Linux Host Configuration

0 Runs DHCP daemon

= Allows auto configuration of the board via
crossover cable

O Provides NFS service to give storage
access — board have no onboard disk

21

Getting things to work!

0 Run the script
/opt/ixp scripts/host startup.sh
= This will bring up the DHCP daemon, TFTP
daemon, and the NFS service

= Setup a HyperTerminal Session (Baud Rate:
57600, Flow Control: None) on the Windows
machine

= Reset the ENP-2611 board (press “red” button
on the board)

= Login as root through the HyperTerminal
session (no password required)

22

Running ipv4_enp2611 on the hardware

o Compile the microengine code on the Windows
machine (set the preprocessor symbol to
USE_IMPORT_VAR and not SIMULATION)
= Must use IXA SDK 3.5 for compilation
= Can use IXA SDK 4.2 for simulation to utilize new features

o Copy the microengine image ipv4 enp2611.uof to
the Linux host at

/opt/hardhat/previewkit/arm/xscale be/target
/opt/proj 544fall04/ipv4 enp2611

Note: the ipv4_enp2611.uof file is already copied to
the Linux host by TAs so you can simply skip this
step if no change is made on the code.

23

Running ipv4_enp2611 on the hardware

o On the ENP-2611 board, run the script

/root/init script.sh

o On each Linux machine, run
/opt/ixp scripts/endsys startup X.sh (X=1if
machine hosting ENP-2611 or X=2 otherwise)

24

PINGing the hosts

0 Now we should be able to PING across the
board

e.g. ping 10.x.0.1 (x=1,2,3 are the fiber
ports on the ENP-2611) ping 10.x.0.2
(x=1,2,3 are the host machines)

25

Lab Setup: Logical Layout

Fast Ethernet
............. RS-232

Gigabit Ethernet (Fiber)

10.1.0.2/24 10.1.0.1/24

Windows

10.3.0.1/24

' = 919

. 192.168.0.1/24
LinuX mngm

txdev0

Linux =

Host 3

10.3.0.2/24

txdev2
10.2.0.1/24

e“s\ txdev1

gig |10.23.0.2/24

Host 2

gig ' —

Linux

26

Quick Summary

Action (in sequence)

Description

Host: /opt/ixp_scripts/
host_startup.sh

Start DHCP/TFTP/NFS services on the
host

Host & ENP-2611:

ENP-2611 gets IP, image filename, and

Doing DHCP NFS mount directory

Host & ENP-2611: ENP-2611 downloads the kernel image.
Doing TFTP Start running the kernel.

ENP-2611: Install loadable kernel modules (CCs)

/root/init_script.sh

Initialize IP address and ARP/route
tables on the board

Host: /opt/ixp_scripts/
endsys_startup_X.sh

Set IP addresses for the gigabit Eth I/F.
Initialize ARP/route tables on the hosts

Where to Obtain the Code Base...

o Microengine (WorkBench):

o Core Code Base (Linux):

28

http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04.zip
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04.zip
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04.zip
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04.zip
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/dl/proj_544fall04_core.tar.gz

Questions?

It is recommended to use online
instructions posted on the course
website for setting up the hardware.

29

	18544: Network Design and Evaluation
	Agenda
	Structure of a Core Component
	Memory Management [1]
	Memory Management [2]
	Patching Load-time Constants [1]
	Patching Load-time Constants [2]
	Example
	Example (Cont.)
	Packet Handling
	Packet Handling: MB„ÃCC [1]
	Packet Handling: MB„ÃCC [2]
	Packet Handling: MB„ÃCC [3]
	Packet Handling: MB„ÃCC [4]
	Packet Handling: CC„ÃMB [1]
	Using the Hardware
	Network Setup: Physical Layout
	Network Setup (Cont.)
	Building the Core [1]
	Build the Core [2]
	Linux Host Configuration
	Getting things to work!
	Running ipv4_enp2611 on the hardware
	Running ipv4_enp2611 on the hardware
	PINGing the hosts
	Lab Setup: Logical Layout
	Quick Summary
	Where to Obtain the Code Base¡K
	Questions?

