18544: Network Design

and Evaluation

Intel IXA SDK and Programming
The Core Components
Sept 12, 2006



Agenda

0 General concept of the IXA software
framework

0 Core component programming
= Memory management
= Message handling
= Patching symbols
= Packet handling

0 Examples and References




Building an Application: The IXP
2400 Programming Models

Microengine

Microengine(s) Microengine
& XScale




Rule of Thumb

O Microengines:

= All, or most, of the per-packet processing

= The data plane processing on the microengines
is divided into logical networking functions called
microblocks.

= Each microblock should be written independently
of the other microblocks to providing modularity
and reusability.




Rule of Thumb (Cont.)

0 The XScale Core: infrequently-arriving
packet types that require more
complicated processing
= Control and configuration packets

= Packets requiring length processing
IP packets with options

= Correcting erroneous conditions
sending ICMP packets
= Providing configuration and management

access for the entire application, including
those functions execute on the microengines




[XA Portability Framework

External
Proce_ssors Control Plane Protocol Stacks
(Optional) I
Control Plane PDK

Xgcale™ |  CoreComponents |

Core
%eder © | CoreComponent infrastructure Libray |

Model

Microengine

Programming

Optimized Data Plane Libraries




Optimized Data Plane Libraries

o0 To aid in portability
= Code can be written for the IXP2XXXX
processor and still compile and run on
successive generations of the microengines
o To help perform common programming
tasks

= Calculating the checksum of an IP header can
be done with a single library routine




Microblock Infrastructure Library

o Provides routines for communication with
the core as well as several mechanisms
for organizing groups of microblocks into
processing groups

For definitive reference — Intel IXA Portability Framework
Reference Manual on the CD




Resource Manager (RM)

o Runs on the Intel XScale core and manages:

Memory: DRAM, SRAM, scratchpad and local memory
can be allocated, freed, and initialized

Ring and queues: Both hardware rings and queues, as
well as software-based rings and queues can be
allocated and accesses

Microengines: Microengines can be started, stopped,
and loaded with new code

Buffers: Packet buffers and buffer freelists can be
created and accessed

Microblock communication: Move messages between
CCs and packets between CCs or between CCs and
microblocks.



The Intel XScale Core Components

0O Processes exception packets

= May be control plane related, such as routing
update message

= May be data plane related requiring extra
processing, such as IP packet with options

= Processing packets not handled by microblocks

o Performs table management and
configuration

o Configure and control microblocks

10




Core Component Infrastructure

(CCI) Library

o Aids in development of core components

m Packet communication channels to microblocks
from core components and vice versa

= Message passing between core components

m Generic communication channels between core
components

= Flexible model for controlling the scheduling
and execution of core components in the Intel
XScale operating system threads
o Insulates programmers from details of

resource manager

11




tions

1Ca

ng Network Appl

Constructil

Ion

Intel Corporati

Source

Conventional

v

nACE

X
2 .
< W =
o0 o’
5 < <
£ 2
» o
) &
whd
- (7))
- £
Sc
»a 8
[
o

ircroengines

-

\ uBlock

“Fast”

Path
Processing

uBlock Group2

uBlock Group1

Accelerator




Structure ot a Core Component

Core Component

13



Working of a Core Component

o Allocate memory for the context

o Allocate memory required by the
application

0 Handle packets or messages as and
when required

0 Send packets or messages as and
when required

14




Using a Core Component

o Anything with a lookup table in
memory needs core to maintain
these in-memory data structure

o Intel IXA SDK provides framework
for implementing core components

0 Single core component can service
multiple microblocks (though this
may limit reusability)

15




Initializing a Core Component

0 An initialization routine

= Allocate memory to be shared with a
microblock

= Establish communication channels with
other core components, the control
plane or the microblock

o Signature for init function must
follow this specification

typedef 1x error (*1x cc 1nit)
(1Xx cc handle hCC, void** pContext);

16



Example of an Init. Routine

//Allocate memory for Context

eth = (ethernet context¥)
1x ossl malloc (s¥zeof (ethernet context));

Where is memory allocated?

1f (eth context == NULL) ({
return IX ERROR WARNING (IX CC ERROR OOM,

(“Failed to allocate memory for context”))

}

*context = eth context;

4

17



Terminating a Core Component

oA termination/shutdown routine

= Release any resource owned by the core
component

o The shutdown function is called when
the core component is being
shutdown

o Signature for shutdown function must
follow this specification

typedef 1x error (*ix cc finil)

1Xx cc handle hCC, void*arg pContext);

18




CC Init/Shutdown Routine

o Initialization:

Jtx/core/ethernet tx/source/ix_cc_eth_ tx init.c
Ln 671:

1X error 1x cc eth tx 1init(

1x cc handle arg hCcHandle,vo1d**
arg ppContext)

o Shutdown/Termination:

Jtx/core/ethernet_tx/source/ix_cc_eth tx fini.c
Ln 293:

1X error 1x cc eth tx fini(

1x cc handle arg hCcHandle, void*

arg pContext) Trace code




Recap: Shared Memory

0 In software the term shared memory
refers to memory that is accessible by

more than one process, where a process is

a running instance of a program.

Shared Memory

20



Why Shared Memory?

o Used to support system-wide data
structures (e.g. route table, arp table,
MAC filters etc.) among core components
and microengines

o Doing the copy can be time consuming
when transferring large quantities of data

o Microengines do not support memory

management (e.g. handle concurrent
requests)

Your project will definitely need to do memory allocatign!




Memory Management |1]

o Memory used by core components
managed using malloc and free

O Resource Manager manages memory
accessed by the microengines

o To allocate memory from the Intel XScale
core using Resource Manager
IX EXPORT FUNCTION ix_error
1x rm mem alloc(

1x memory type arg MemType,
1X uilnt32 arg MemChannel,
1X uilnt32 arg Size,
volid** arg pMemoryAddr) ; 22




Memory Management |2]

0 Address microengines use may be
different than Intel XScale core

o For example, if you want to give an
address returned by ix rm mem alloc to
the microengines, convert it to an address

which can be used by microengines using
ix rm get phys offset function

o Also tells the memory type and channel if
required

Trace code




0XFFFF FFFF

OxECO0 QD00

PCIMEM
(172 GB)

“0xDFFF FFFF

OxcO00 0000

Other
/2 GRY

“OXBF FF FFFF

0xBO00 0000

SRANM
i1 GB)

TOXTFFF FFFF

Available on our cards:
v 256 MB SDRAM

v 64 MB SRAM

v 16 KB Scratch

0x0000 0000

CRAM
and
- Slowport'FLASH -
RO
(2 GB)

2. 0GB

DG Controler eSS (22MB]
T P Comid TReqs (2
PelSpec/ACK (32 ME)

PCICFG (32MB)

PCI D - (low 64K of 32 ME)
Core Local C5Rs (32 MB)
Resanead
(6d ME)

DRAM CsRs (22 I'-.-1EI|

SRAM C5Rs and
Queus Array (64 MEB)

Serateh (32 MB)

MSF (32 ME)

Slc:wpnrt (or Flash HDMJ
- (64 ME) =
= Reserved (32 MB)

CAP-CsRs(32 ME)

0xDFOO D000

= OxDEOD 0000

0xDC00 0000
0xDAOO DOO0*
0xD200 0000
0xDE00 0000

0xDO00 0000
0xC EOD 0000
0xCC00 0000
0xCai0 0000
0xC200 0000

= 0xC400 0000

0xC200 0000
0xCO00 0000

The 4 GB (32-bit address)
Intel XScale core address

space

Source: Intel IXA2400/2800
Programmer’s Reference Manual



Implementation Note

o0 The Resource Manager memory
management is designed to handle one-
time memory allocation

o Applications that require handling a large
number of allocation and free operations
dynamically need to obtain enough
memory from the RM and manage it
themselves

25




Patching [Load-time Constants [1]

o A way of communication between the
XScale core and microengines

o Used in patching memory locations
determined when the core component is
initialized

m The va
at com
the cod

ues of these constants are not known
dile time, but rather are determined at
e loading time

m The va

ues cannot be changed once they are

set (can be only changed by stopping and
reloading the microengines)

26



Patching Load-time Constants [2]

o Signature of load-time constants:

IX EXPORT FUNCTION 1x error
1X rm ueng patch symbols (
1X uint32 arg MENumber,

1X uilnt32 arg SymbolsNumber,

const 1x imported symbol
arg aSymbols[]);

o In microengine assembly code:
.1mport var ETHERNET DATA

or in microengine C:
int ETHERNET DATA =
LoadTimeConstant (“ETHERNET DATA");

27

Trace code




Recap: Messages

0 Messages, to be short, are various
notifications sent to a process in order to
notify it of various events.

0 Each message has a message handler,
which is a function that gets called when
the process receives that message. The
function is called in "asynchronous mode",
meaning that no where in your program
you have code that calls this function
directly.

28




Why Using Messages?

0 Used by the core component to notify
other core components that some event
occurred, without these core components
needing to poll for the event.

o Examples of message handling jobs
= Dump/Purge/Modify ARP cache
= Dump/Purge/Modify route entries

29




Message Handling in Core
Components [1]

o One or more message handler routine

= Control or configuration message (not
necessarily a packet)

o Take input from or give input to other
Intel XScale core code

o Core components have functions that are
called when receiving messages

typedef 1x error (*¥ 1x msg handler) (
1X buffer handle arg hDataToken,
1Xx uint32 arg UserData,
volid* arg pComponentContext)

30




Message Handling in Core
Components [2]

o During initialization, the core component

registers its message handlers using the
ix cci cc add message handler function

o The function to add a message handler is:
1X error 1x ccl cc add message handler (
1X cc_handle arg hComponent,
1x uint32 arg InputlID,
1x msg handler* arg Handler,

1X 1nput type arg SourceType);

31

Trace code




Message Handling in Core
Components |[3]

O The core component uses
1x cc msup send async msg(),
1X cc msup send msqg(),
ix cci send message () to send
MESSages

0 The dispatch loop handles packets that

come from the Intel XScale core
component and steers them to the
appropriate microblock.

Trace code




Packet Handling in a Core

Component [1]

0 One or more packet handler routine

= Process exception packets, or packets from the
control plane or other core components or
microblocks

o OS might want to send packets to
microengines too

o The signature of the handler function:
1Xx error (* 1ix pkt handler) (
1Xx buffer handle arg hDataToken,
1x uint32 arg ExceptionCode,
void* arg pComponentContext)

33



Packet Handling [2]

o Similar to handling messages. Just that
ix cci cc add packet handler is called

to register the handler in the core:
1X error 1x ccl cc add packet handler (

1X cc _handle arg hComponent,

1X uilnt32 arg InputlID,

1x pkt handler arg Handler,

1X 1nput type arg SourceType );

34

Trace code




Packet Handling [3]

o Core components can send packets to

microblocks or other core components
using ix cci send packet ()

o When microblock wants to send packets to
Its core component:

= it sets the next block value to the unique packet
handler identifier (i.e. Input ID)

= The microblock can also set a 32-bit exception
code

Trace code




Packet Handling [4]

o The following microengine C code sends
packet to the ethernet core component:

// If the entry is not valid, drop this
packet

1f (!table entry.valid) {
dl set exception (ETHERNET EXCEPTION ID,0);

dlNextBlock = IX EXCEPTION;

return; \\\
}

Dispatch loop will catch this packet
and notify the core

Good Reference: IAX Framework Development Manual 36




Example:
Packet and
MG S S agﬁ D ata cc1 Message

Handler

PathS Packet [T e N

Handler p,

between core | —H

cC2

Handler

components

CCc3

Message
Input
DB

Message
™ Handler

Packat
=¥ Handler 1

Packet
Bl Handler 2

Packet
Handler 2

Source: IXA | @ e e
Portability I
Framework —

Developer’s Manual




Configuration
Control plandl€SSages  FwdControl ACE
b.t. CCs Update cache & forward

]
Full lockup ‘ ®
“
Forwarding table I S‘
Route entry I I
(DRAM) prefix = 192.0.0.0 f
ifnum = 82 .
Memory / nexthop = 192.168.0.02 i Packet Handling
Allocation R e I
by the core J— i
Core i
...... Mlcroengme Datalaﬂel
(SRAM) prane & :
Forwarding cachj g i
3 Exception: i
- Quick loorup l not in cache
Input interface \

i
ﬁ. | Forwarder microACE
Packet flow meard— "

Fast path
Qutput interface



Summary

o Understand the basic concept of a
core component

o Inter-communication between core
components and microengines —
shared memory, message and
packet handling

o0 Introduce basic core component
programming

0 Programming Examples

39




Project Base Code

o http://www.cs.cmu.edu/afs/andrew.cmu.e
du/course/18/544/www/dl/proj 544fall04
~core.tar.qgz

40


http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz

Reterences

O

= Resource Manager overview and API list
= Core Component overview and API list
= Microblock architecture and functions

= Other useful information for development and
debugging

= Signatures and Syntax of APIs

41



Reterences (Cont.)

o Useful APIs for programming:

= Most commonly used Message/Packet Handling APIs that
you will need in doing projects

m MEV2 instruction set
m Assembler

o Intel IXAP SDK Software Framework CD
(also available on the course site)

42


http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/handouts/CoreCompMemMgmt.pdf
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/handouts/CoreCompMemMgmt.pdf

Questions?



	18544: Network Design and Evaluation
	Agenda
	Building an Application: The IXP 2400 Programming Models
	Rule of Thumb
	Rule of Thumb (Cont.)
	IXA Portability Framework
	Optimized Data Plane Libraries
	Microblock Infrastructure Library
	Resource Manager (RM)
	The Intel XScale Core Components
	Core Component Infrastructure (CCI) Library
	Structure of a Core Component
	Working of a Core Component
	Using a Core Component
	Initializing a Core Component
	Example of an Init. Routine
	Terminating a Core Component
	CC Init/Shutdown Routine
	Recap: Shared Memory
	Why Shared Memory?
	Memory Management [1]
	Memory Management [2]
	Implementation Note
	Patching Load-time Constants [1]
	Patching Load-time Constants [2]
	Recap: Messages
	Why Using Messages?
	Message Handling in Core Components [1]
	Message Handling in Core Components [2]
	Message Handling in Core Components [3]
	Packet Handling in a Core Component [1]
	Packet Handling [2]
	Packet Handling [3]
	Packet Handling [4]
	Summary
	Project Base Code
	References
	References (Cont.)
	

