
1

18544: Network Design
and Evaluation

Intel IXA SDK and Programming
The Core Components

Sept 12, 2006

2

Agenda
General concept of the IXA software
framework
Core component programming

Memory management
Message handling
Patching symbols
Packet handling

Examples and References

3

Building an Application: The IXP
2400 Programming Models

4

Rule of Thumb
Microengines:

All, or most, of the per-packet processing
The data plane processing on the microengines
is divided into logical networking functions called
microblocks.
Each microblock should be written independently
of the other microblocks to providing modularity
and reusability.

5

Rule of Thumb (Cont.)
The XScale Core: infrequently-arriving
packet types that require more
complicated processing

Control and configuration packets
Packets requiring length processing

IP packets with options

Correcting erroneous conditions
sending ICMP packets

Providing configuration and management
access for the entire application, including
those functions execute on the microengines

6

IXA Portability Framework

XScale™
Core

Programming
Model

Resource Manager Library

Control Plane PDK

Core Components

Core Component Infrastructure Library
OSSL

Microengine
Programming

Model

Optimized Data Plane Libraries

Micro
block

Micro
block

Micro
block

Microblock Infrastructure Library

External
Processors
(Optional)

Control Plane Protocol Stacks

7

Optimized Data Plane Libraries

To aid in portability
Code can be written for the IXP2XXXX
processor and still compile and run on
successive generations of the microengines

To help perform common programming
tasks

Calculating the checksum of an IP header can
be done with a single library routine

8

Microblock Infrastructure Library
Provides routines for communication with
the core as well as several mechanisms
for organizing groups of microblocks into
processing groups

For definitive reference → Intel IXA Portability Framework
Reference Manual on the CD

9

Resource Manager (RM)
Runs on the Intel XScale core and manages:

Memory: DRAM, SRAM, scratchpad and local memory
can be allocated, freed, and initialized
Ring and queues: Both hardware rings and queues, as
well as software-based rings and queues can be
allocated and accesses
Microengines: Microengines can be started, stopped,
and loaded with new code
Buffers: Packet buffers and buffer freelists can be
created and accessed
Microblock communication: Move messages between
CCs and packets between CCs or between CCs and
microblocks.

10

The Intel XScale Core Components
Processes exception packets

May be control plane related, such as routing
update message
May be data plane related requiring extra
processing, such as IP packet with options
Processing packets not handled by microblocks

Performs table management and
configuration
Configure and control microblocks

11

Core Component Infrastructure
(CCI) Library

Aids in development of core components
Packet communication channels to microblocks
from core components and vice versa
Message passing between core components
Generic communication channels between core
components
Flexible model for controlling the scheduling
and execution of core components in the Intel
XScale operating system threads

Insulates programmers from details of
resource manager

12

Constructing Network Applications

Rx F1
F2

F3 F4 Tx

Rx F1
F2

F3 F4 Tx

StrongARM*StrongARM*
ACEACE

µACE

Stack Stack
ACEACE

ResourceResource
ManagerManager

µACE

Source: Intel Corporation

Conventional Conventional
ACE

OMSOMS
ACE

““SlowSlow””
PathPath

ProcessingProcessing

StrongARM*StrongARM*

MircroenginesMircroengines

““FastFast””
PathPath

ProcessingProcessing

µµBlockBlock
Accelerator µµBlock Group1Block Group1 µµBlock Group2Block Group2Accelerator

13

Structure of a Core Component

14

Working of a Core Component

Allocate memory for the context
Allocate memory required by the
application
Handle packets or messages as and
when required
Send packets or messages as and
when required

15

Using a Core Component
Anything with a lookup table in
memory needs core to maintain
these in-memory data structure
Intel IXA SDK provides framework
for implementing core components
Single core component can service
multiple microblocks (though this
may limit reusability)

16

Initializing a Core Component
An initialization routine

Allocate memory to be shared with a
microblock
Establish communication channels with
other core components, the control
plane or the microblock

Signature for init function must
follow this specification
typedef ix_error (*ix_cc_init)

(ix_cc_handle hCC, void** pContext);

17

Example of an Init. Routine
//Allocate memory for Context
eth_context = (ethernet_context*)

ix_ossl_malloc(sizeof(ethernet_context));

if (eth_context == NULL) {
return IX_ERROR_WARNING(IX_CC_ERROR_OOM,

(“Failed to allocate memory for context”));
}
*context = eth_context;

Where is memory allocated?

18

Terminating a Core Component
A termination/shutdown routine

Release any resource owned by the core
component

The shutdown function is called when
the core component is being
shutdown
Signature for shutdown function must
follow this specification
typedef ix_error (*ix_cc_fini)

ix_cc_handle hCC, void*arg_pContext);

19

CC Init/Shutdown Routine
Initialization:
./tx/core/ethernet_tx/source/ix_cc_eth_tx_init.c
Ln 671:
ix_error ix_cc_eth_tx_init(

ix_cc_handle arg_hCcHandle,void**
arg_ppContext)

Shutdown/Termination:
./tx/core/ethernet_tx/source/ix_cc_eth_tx_fini.c
Ln 293:
ix_error ix_cc_eth_tx_fini(

ix_cc_handle arg_hCcHandle, void*
arg_pContext) Trace code

20

Recap: Shared Memory
In software the term shared memory
refers to memory that is accessible by
more than one process, where a process is
a running instance of a program.

Process 1 Process 2

Shared Memory

21

Why Shared Memory?
Used to support system-wide data
structures (e.g. route table, arp table,
MAC filters etc.) among core components
and microengines
Doing the copy can be time consuming
when transferring large quantities of data
Microengines do not support memory
management (e.g. handle concurrent
requests)

Your project will definitely need to do memory allocation!

22

Memory Management [1]
Memory used by core components
managed using malloc and free
Resource Manager manages memory
accessed by the microengines
To allocate memory from the Intel XScale
core using Resource Manager
IX_EXPORT_FUNCTION ix_error

ix_rm_mem_alloc(
ix_memory_type arg_MemType,
ix_uint32 arg_MemChannel,
ix_uint32 arg_Size,
void** arg_pMemoryAddr);

23

Memory Management [2]
Address microengines use may be
different than Intel XScale core
For example, if you want to give an
address returned by ix_rm_mem_alloc to
the microengines, convert it to an address
which can be used by microengines using
ix_rm_get_phys_offset function

Also tells the memory type and channel if
required

Trace code

24

The 4 GB (32-bit address)
Intel XScale core address
space

Source: Intel IXA2400/2800
Programmer’s Reference Manual

Available on our cards:
256 MB SDRAM
64 MB SRAM
16 KB Scratch

25

Implementation Note
The Resource Manager memory
management is designed to handle one-
time memory allocation
Applications that require handling a large
number of allocation and free operations
dynamically need to obtain enough
memory from the RM and manage it
themselves

26

Patching Load-time Constants [1]
A way of communication between the
XScale core and microengines
Used in patching memory locations
determined when the core component is
initialized

The values of these constants are not known
at compile time, but rather are determined at
the code loading time
The values cannot be changed once they are
set (can be only changed by stopping and
reloading the microengines)

27

Patching Load-time Constants [2]
Signature of load-time constants:
IX_EXPORT_FUNCTION ix_error

ix_rm_ueng_patch_symbols(
ix_uint32 arg_MENumber,
ix_uint32 arg_SymbolsNumber,
const ix_imported_symbol
arg_aSymbols[]);

In microengine assembly code:
.import_var ETHERNET_DATA

or in microengine C:
int ETHERNET_DATA =

LoadTimeConstant (“ETHERNET_DATA”);

Trace code

28

Recap: Messages
Messages, to be short, are various
notifications sent to a process in order to
notify it of various events.
Each message has a message handler,
which is a function that gets called when
the process receives that message. The
function is called in "asynchronous mode",
meaning that no where in your program
you have code that calls this function
directly.

29

Why Using Messages?
Used by the core component to notify
other core components that some event
occurred, without these core components
needing to poll for the event.
Examples of message handling jobs

Dump/Purge/Modify ARP cache
Dump/Purge/Modify route entries

30

Message Handling in Core
Components [1]

One or more message handler routine
Control or configuration message (not
necessarily a packet)

Take input from or give input to other
Intel XScale core code
Core components have functions that are
called when receiving messages
typedef ix_error (* ix_msg_handler) (

ix_buffer_handle arg_hDataToken,
ix_uint32 arg_UserData,
void* arg_pComponentContext)

31

Message Handling in Core
Components [2]

During initialization, the core component
registers its message handlers using the
ix_cci_cc_add_message_handler function

The function to add a message handler is:
ix_error ix_cci_cc_add_message_handler(
ix_cc_handle arg_hComponent,
ix_uint32 arg_InputID,
ix_msg_handler* arg_Handler,
ix_input_type arg_SourceType);

Trace code

32

Message Handling in Core
Components [3]

The core component uses
ix_cc_msup_send_async_msg(),
ix_cc_msup_send_msg(),
ix_cci_send_message() to send
messages
The dispatch loop handles packets that
come from the Intel XScale core
component and steers them to the
appropriate microblock.

Trace code

33

Packet Handling in a Core
Component [1]

One or more packet handler routine
Process exception packets, or packets from the
control plane or other core components or
microblocks

OS might want to send packets to
microengines too
The signature of the handler function:
ix_error (* ix_pkt_handler) (
ix_buffer_handle arg_hDataToken,
ix_uint32 arg_ExceptionCode,
void* arg_pComponentContext)

34

Packet Handling [2]
Similar to handling messages. Just that
ix_cci_cc_add_packet_handler is called
to register the handler in the core:
ix_error ix_cci_cc_add_packet_handler(
ix_cc_handle arg_hComponent,
ix_uint32 arg_InputID,
ix_pkt_handler arg_Handler,
ix_input_type arg_SourceType);

Trace code

35

Packet Handling [3]
Core components can send packets to
microblocks or other core components
using ix_cci_send_packet()

When microblock wants to send packets to
its core component:

it sets the next block value to the unique packet
handler identifier (i.e. Input ID)
The microblock can also set a 32-bit exception
code

Trace code

36

Packet Handling [4]
The following microengine C code sends
packet to the ethernet core component:

// If the entry is not valid, drop this
packet
if(!table_entry.valid) {

dl_set_exception(ETHERNET_EXCEPTION_ID,0);
dlNextBlock = IX_EXCEPTION;
return;

}
Dispatch loop will catch this packet
and notify the core

Good Reference: IAX Framework Development Manual

37

Example:
Packet and
Message Data
Paths
between core
components

Source: IXA
Portability
Framework
Developer’s Manual

38

Core

Microengine

Memory
Allocation
by the core

(DRAM)

(SRAM)

Packet Handling

Configuration
Messages
b.t. CCs

39

Summary

Understand the basic concept of a
core component
Inter-communication between core
components and microengines –
shared memory, message and
packet handling
Introduce basic core component
programming
Programming Examples

40

Project Base Code
http://www.cs.cmu.edu/afs/andrew.cmu.e
du/course/18/544/www/dl/proj_544fall04
_core.tar.gz

http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/dl/proj_544fall04_core.tar.gz

41

References
IXA Architecture Portability
Framework Developer’s Manual

Resource Manager overview and API list
Core Component overview and API list
Microblock architecture and functions
Other useful information for development and
debugging

IXA Architecture Portability
Framework Reference Manual

Signatures and Syntax of APIs

42

References (Cont.)
Useful APIs for programming:
http://www.cs.cmu.edu/afs/andrew.cmu.edu/cou
rse/18/544/www/handouts/CoreCompMemMgmt.
pdf

Most commonly used Message/Packet Handling APIs that
you will need in doing projects

Intel® IXP2400 and IXP2800 Network
Processor Programmer’s Reference Manual

MEv2 instruction set
Assembler

Intel IXAP SDK Software Framework CD
(also available on the course site)

http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/handouts/CoreCompMemMgmt.pdf
http://www.cs.cmu.edu/afs/andrew.cmu.edu/course/18/544/www/handouts/CoreCompMemMgmt.pdf

43

Questions?

	18544: Network Design and Evaluation
	Agenda
	Building an Application: The IXP 2400 Programming Models
	Rule of Thumb
	Rule of Thumb (Cont.)
	IXA Portability Framework
	Optimized Data Plane Libraries
	Microblock Infrastructure Library
	Resource Manager (RM)
	The Intel XScale Core Components
	Core Component Infrastructure (CCI) Library
	Structure of a Core Component
	Working of a Core Component
	Using a Core Component
	Initializing a Core Component
	Example of an Init. Routine
	Terminating a Core Component
	CC Init/Shutdown Routine
	Recap: Shared Memory
	Why Shared Memory?
	Memory Management [1]
	Memory Management [2]
	Implementation Note
	Patching Load-time Constants [1]
	Patching Load-time Constants [2]
	Recap: Messages
	Why Using Messages?
	Message Handling in Core Components [1]
	Message Handling in Core Components [2]
	Message Handling in Core Components [3]
	Packet Handling in a Core Component [1]
	Packet Handling [2]
	Packet Handling [3]
	Packet Handling [4]
	Summary
	Project Base Code
	References
	References (Cont.)
	

