18-544: Network Design

and Evaluation

IXP2400 Architecture and
Programming

August 31, 2005

Agenda

O Reminder: optional lab session this Friday
= Hamerschlag Hall 1204, 2:30 pm

= Introduction to IXP programming
Development environment
Initial code base

0 Recap of last lecture

O IXP2400 architecture overview

O MEvV2 instruction set crash course
O Data plane programming

O Distribute the I XA SDK cds

Recap

O Network processors
= Optimized for network workloads
= High-speed data movement
= Support for common network functions

O Architectural Trends

m Parallelism
Multi-core
Multi-threaded

= Intelligent bus and memory interfaces
Asynchronous operation

IXP2400 Architecture
Overview

I[XP2400 Block Diagram

Meadia Swilch| |Scratchpad SRAM SRAM DR
Fabric IMZFI| | Memary Contrallar O l§Cantraler 1 | Conlrallar

WE L JPE]| L[mE L] e el 3cale ™ | Nt 3 Scale®
O D0 Oxi0 s 11 Lo pofe
— — Panpherals
I I::'[I:'I:-
ME ME WE | [HE
_- P
| G2] 7] x| a3 otz Perfarmance
Mongar
ME Clustes O ME Clusfer 1

Media and Switch Fabric Interface
(MSF)

O Primary data path interface
= Connects 1XP2400 to external devices, e.g., MAC
= Independent Rx and Tx interfaces

= Separately configurable for various bus protocols (e.g.,
UTOPIA, POS-PHY)

0 Connected to internal busses
= Microengines
= DRAM controller

O Data RAM’s
= 8K RBUF and TBUF
= Packets segmented into fixed-size buffers

DRAM

o Off-chip packet data memory

= High latency
= High bandwidth

0 DRAM Controller

= “read” and “write” commands from requestors

m Burst transfers
16-128 bytes
64-bit transactions

SRAM

o Off-chip application data memory
= E.g., route table
= Lower latency than DRAM
= Lower peak bandwidth

O 2 independent SRAM controllers
= Maintain command queues from requestors
= 32-bit transactions

SRAM commands

0 Reads and Writes
= 4-64 byte transfers

O Atomic operations
= Test-and-set, increment/decrement, swap, etc
= Atomic with respect to other atomic operations only

O Queue operations

= SRAM-based queue-like data structures
Free buffer list
Multi-buffer packets

= Enqueue and dequeue commands
= Linked list implementation

O Ring and Journaling Operations
m Fixed-size circular buffers
m Insert and remove commands

Scratchpad

0 16K on-chip shared memory
O Low latency

O Frequently-accessed application data
= E.g., packet counters

O 32-bit transactions

10

Scratchpad Commands

0 Reads and Writes
= 4-64 byte transfers to/from Microengines

O Atomic Operations
= Increment/decrement, add/subtract, swap, etc
= Atomic with respect to normal reads/writes as well

O Ring Operations
= Up to 16 rings
m 128, 256, 512 or 1024 32-bit words
= Naturally aligned in Scratchpad address space
= “Get” and “put” commands

11

XScale Core

0 Standard embedded CPU

O Runs Linux and control plane software
O More on this next time

12

Microengine Architecture
and Programming

Microengine Block Diagram

HP_Cata_ Im

E_Push {from SHARM,

O Pusin ¥Eoale® Sorsdchoad, MSF,

Haags b A PG
a0
Local
Mem
-1 Conbrol Etare
et e D
Fazigh- AFER
-
>
Il o ——— & o
i B_Src
T lrdesx
=l _E-’l
RTRemaind
CRC UhE I | -
l [| 1 T
Inﬁ._'::ip-zmncl IE_I:'_'InE-ranl:l
Ewscuiiaon
Ciab=spakh
(Shil, fSdd, Subbacs,
MulEply Logicals, Fimd First Bae, CARM)
S Push S i _
(R | R —— [e e =1
] e Cdr_ Drasa_ il
+ o+ - +
1za A28 I:_glrgg..
Local N . idy Cantral
CERs WEFER HFER o
- E L 11 3 —
- w
O_ Full 5_Pull

Cormrmard

Register Files

O General-Purpose Registers
= 256 per microengine
= Split in two banks

O Transfer Registers
= Access to all external resources
= DRAM transfer registers: 128 in, 128 out
= SRAM transfer registers
128 in, 128 out
All resources other than DRAM (SRAM, Scratchpad, MSF)
O Next-Neighbor Registers
128 per microengine
Another form of IPC
Neighboring microengines have dedicated connections
Can be used for local storage

15

LLocal Memory

O Private microengine memory
0 640 32-bit words

O Lowest latency in memory hierarchy

O Separate address and data accesses

= 3-cycle latency before address becomes
effective

16

Control Store

O Static instruction memory
= 4096 40-Dbit instruction words
= No I-cache
= Potential code size concerns

O Loaded by XScale at initialization time

m XScale must shutdown and restart ME to
reload control store

17

Contexts and Addressing

O 8 hardware threads per microengine
= Each thread has own PC
= Fast context switching

O Register Usage

= Context-relative addressing
“private” registers
32 GPR’s per thread
32 SRAM, 32 DRAM transfer registers per thread
16 Next Neighbor registers per thread
= Absolute addressing
GPR’s only
Threads access same physical register

18

Synchronization and Signals

0 Asynchronously-completing external
events
= E.g., memory references
= ME’s will not stall on in-flight register writes

O Signals
= Used to indicate event completion to ME
= 15 signals per context

= 1/0 instructions specify signal to use
Thread swapped out and woken up upon completion
Threads can explicitly poll a particular signal

19

Other Hardware

0 CRC Unit
= Efficient CRC computation

o CAM
= 16 32-bit entries
= Can be used to implement small cache

20

Example

Device(s)
A

/ v
packet l DRAM
Mipackeds Controllers

A S

*

l SRAM

Controllers

A
A 4

l Scratchpad,
Hash, CAP

MEv2 Instruction Set

Assembler Syntax

O Register declarations
.reg $vall, $val2 ;SRAM transfer registers

-reg $$dramreg //DRAM transfer register
.reg count, tmp /* relative mode GPR’s */
.reg @myreg ;absolute mode GPR

.reg n$neighbor //next neighbor register

O Transfer register ordering
.xFfer_order $vall, $val2 // $vall, $val2 contiguous

O Signal declarations
.S1g sig_scratch_write

23

ALU Instructions

alu[dest, A op, alu op, B op]
alu shf]dest, A op, alu op, B op shf]

oA op, B op

= Input arguments: GPR, transfer, immediate
O Dest

= Destination: GPR, transfer, neighbor
o alu op

m +, -, +carry, B-A, B, -B, AND, XOR, etc
O B op shf

= Shift applied to B argument

= Left/right shifts, rotates
= Specified as immediate or indirect

24

ALU Example

.reg tmp, iIp_max_main
.reg 1n_d netmask, in_d network addr

;get last i1p adress of subnet & restore MSB of subnet In case
;It"s clear to calculate using a correct netmask

alu[tmp, --, ~b, 1In_d_netmask] ; tmp=~netmask
alu[tmp, tmp, AND~, 1, <<31] ;tmp&=~(1<<31)

; 1p_max_main=tmp]|network_address
alu[1p_max _main, tmp, OR , iIn_d network addr]

25

Branch Instructions

0 Conditional branches
bcc| label#], opt tok

0 Unconditional branches
br[label#], opt tok

O Other branches
br bclr[reg, bit p, label#], opt tok
br=ctx[ctx, label#], opt tok
br=byte[reg, byte, b val, label#], opt tok
br=signal[sig name, label#], opt tok
br i1np state|state, label#], opt tok

26

Branch Parameters

O Condition codes

= beq, bne, bge, blt, bge, bcc, etc
O Optional token

= Delay slots

= defer[n], n=1, 2, 3

= Max number of delay slots determined by
Instruction type

27

Jumps

0 Computed branches (e.g., jump table)
jump[src, label#], opt tok

O Parameters

m SIrcC
Jump table offset
GPR

= label#
Jump table base address

= opt_tok
defer[n]
targets[labell, label2, .., labeln]

= Possible jump table locations

28

Control Flow Examples

0 Example 1: loops

.reg foo
/* foo initialized to 0*/

loop#:

alu[foo, foo, +, 1]
alu[--, foo, -, LOOP_COUNT_CONSTANT]

br1=0[loop#]

O Example 2: contexts

bri=ctx[0, death#]
/* this code executed by thread 0 only */

death#:
ctx_arb[kill] ;this instruction kills the thread that executes it
nop
nop
nop
nop

29

DRAM Access Instructions

dram[cmd, xfer, opl, op2, cnt], opt tok
dram[cmd, --, opl, op2, cnt], tok, opt tok

O Parameters
= cmd: command code
read, write
rbuf rd, tbuf wr in second form
xFer: source/destination DRAM transfer register
opl, op2: restricted address operands
cnt: transfer size (1-8) in quadwords
tok: indirect ref specifies RBUF/TBUF address
opt _tok: sig_done[sig name], ctx _swap[sig_nhame]

30

SRAM Access Instructions

sram[cmd, xfer, opl, op2, cnt], opt tok
sram[cmd, xfer, opl, op2], opt tok
sram[cmd, --, opl, op2], opt tok

O Parameters

m cmd: command code
read, write

incr, decr, swap, add, etc
engueue, engqueue_tail, dequeue

xfer: source/destination SRAM transfer register

opl, op2: restricted address operands

cnt: transfer size (1-8) in longwords

opt_tok: sig _done[sig name], ctx swap[sig name]

31

Scratchpad Instructions

scratchfcmd, xfer, opl, op2, cnt], opt tok
scratch[cmd, xfer, opl, op2], opt tok

O Parameters

m cmd: command code
read, write

incr, decr, swap, add, etc
put, get

xfer: source/destination SRAM transfer register

opl, op2: restricted address operands

cnt: transfer size (1-8) in longwords

opt _tok: sig_done[sig name], ctx swap[sig_name]

32

[/O Examples

// sram reads 4-byte words

-begin
// register declaration

.reg sram_address, $sxferl, $sxfer2
.xfer_order $sxferl, $sxfer2

immed[sram_address, 0x20]

sram_address
immed[$sxferl,0xA0]

ol | $sxferl reg

sram[write, $sxferl, sram_address, 0,1],
ctx _swap[sram_sig 1]

sram|[read, $sxfer2, sram address, 0, 1],
ctx _swap|[sram_sig 1]

-end

33

Data Plane Programming
Models

Microblocks

0 Data plane software components

O Perform isolated network function
= IPv4 forwarding
= Packet Rx
= Organized In “pipeline”

= Communicate with adjacent microblocks and
control plane

R e

Microblock Groups

O Multiple microblocks on same microengine

O Packet transit logical, no inter-ME
communication

0 Organized in Dispatch Loop
= Infinite loop

= Microblocks executed in order for each packet

36

Pipeline model

O Packet processing spread across multiple
microengines

o AKA “Context Pipeline”
O Extreme case: one Microblock per ME
O Packet physically moves through pipeline

MEO ME1 ME2 ME3 ME4

37

Pool-of-Threads model

O Each thread fully handles one packet
o AKA “Functional Pipeline”

MEO

ME1

ME2

ME3

38

Mixed Models: Pipeline of Pools

-
I-»I-»I-I-I
-

MEO ME1,2,3 ME4 MES MEG, 7

References

O IXP 2400/2800 Programming: Chapter 1
and 2

O Programmer’s reference manual
O Hardware’s reference manual

40

