
1

18-544: Network Design
and Evaluation

IXP2400 Architecture and
Programming

August 31, 2005

2

Agenda
Reminder: optional lab session this Friday

Hamerschlag Hall 1204, 2:30 pm
Introduction to IXP programming

Development environment
Initial code base

Recap of last lecture
IXP2400 architecture overview
MEv2 instruction set crash course
Data plane programming
Distribute the IXA SDK cds

3

Recap
Network processors

Optimized for network workloads
High-speed data movement
Support for common network functions

Architectural Trends
Parallelism

Multi-core
Multi-threaded

Intelligent bus and memory interfaces
Asynchronous operation

4

IXP2400 Architecture
Overview

5

IXP2400 Block Diagram

6

Media and Switch Fabric Interface
(MSF)

Primary data path interface
Connects IXP2400 to external devices, e.g., MAC
Independent Rx and Tx interfaces
Separately configurable for various bus protocols (e.g.,
UTOPIA, POS-PHY)

Connected to internal busses
Microengines
DRAM controller

Data RAM’s
8K RBUF and TBUF
Packets segmented into fixed-size buffers

7

DRAM
Off-chip packet data memory

High latency
High bandwidth

DRAM Controller
“read” and “write” commands from requestors
Burst transfers

16-128 bytes
64-bit transactions

8

SRAM
Off-chip application data memory

E.g., route table
Lower latency than DRAM
Lower peak bandwidth

2 independent SRAM controllers
Maintain command queues from requestors
32-bit transactions

9

SRAM commands
Reads and Writes

4-64 byte transfers
Atomic operations

Test-and-set, increment/decrement, swap, etc
Atomic with respect to other atomic operations only

Queue operations
SRAM-based queue-like data structures

Free buffer list
Multi-buffer packets

Enqueue and dequeue commands
Linked list implementation

Ring and Journaling Operations
Fixed-size circular buffers
Insert and remove commands

10

Scratchpad
16K on-chip shared memory
Low latency
Frequently-accessed application data

E.g., packet counters

32-bit transactions

11

Scratchpad Commands
Reads and Writes

4-64 byte transfers to/from Microengines

Atomic Operations
Increment/decrement, add/subtract, swap, etc
Atomic with respect to normal reads/writes as well

Ring Operations
Up to 16 rings
128, 256, 512 or 1024 32-bit words
Naturally aligned in Scratchpad address space
“Get” and “put” commands

12

XScale Core
Standard embedded CPU
Runs Linux and control plane software
More on this next time

13

Microengine Architecture
and Programming

14

Microengine Block Diagram

15

Register Files
General-Purpose Registers

256 per microengine
Split in two banks

Transfer Registers
Access to all external resources
DRAM transfer registers: 128 in, 128 out
SRAM transfer registers

128 in, 128 out
All resources other than DRAM (SRAM, Scratchpad, MSF)

Next-Neighbor Registers
128 per microengine
Another form of IPC
Neighboring microengines have dedicated connections
Can be used for local storage

16

Local Memory
Private microengine memory
640 32-bit words
Lowest latency in memory hierarchy
Separate address and data accesses

3-cycle latency before address becomes
effective

17

Control Store
Static instruction memory

4096 40-bit instruction words
No i-cache
Potential code size concerns

Loaded by XScale at initialization time
XScale must shutdown and restart ME to
reload control store

18

Contexts and Addressing
8 hardware threads per microengine

Each thread has own PC
Fast context switching

Register Usage
Context-relative addressing

“private” registers
32 GPR’s per thread
32 SRAM, 32 DRAM transfer registers per thread
16 Next Neighbor registers per thread

Absolute addressing
GPR’s only
Threads access same physical register

19

Synchronization and Signals
Asynchronously-completing external
events

E.g., memory references
ME’s will not stall on in-flight register writes

Signals
Used to indicate event completion to ME
15 signals per context
I/O instructions specify signal to use

Thread swapped out and woken up upon completion
Threads can explicitly poll a particular signal

20

Other Hardware
CRC Unit

Efficient CRC computation

CAM
16 32-bit entries
Can be used to implement small cache

21

Example
External
Media

Device(s)

MSF

DRAM

DRAM
Controllers

SRAM
Controllers

SHaC ME Cluster 0 ME Cluster 1

Scratchpad,
Hash, CAP MEs MEs

Intel
XScale Core

SRAM
Packet

mpackets

packet

packet

22

MEv2 Instruction Set

23

Assembler Syntax
Register declarations

.reg $val1, $val2 ;SRAM transfer registers

.reg $$dramreg //DRAM transfer register

.reg count, tmp /* relative mode GPR’s */

.reg @myreg ;absolute mode GPR

.reg n$neighbor //next neighbor register

Transfer register ordering
.xfer_order $val1, $val2 // $val1, $val2 contiguous

Signal declarations
.sig sig_scratch_write

24

ALU Instructions
alu[dest, A_op, alu_op, B_op]

alu_shf[dest, A_op, alu_op, B_op_shf]

A_op, B_op
Input arguments: GPR, transfer, immediate

Dest
Destination: GPR, transfer, neighbor

alu_op
+, -, +carry, B-A, B, ~B, AND, XOR, etc

B_op_shf
Shift applied to B argument
Left/right shifts, rotates
Specified as immediate or indirect

25

ALU Example
.reg tmp, ip_max_main

.reg in_d_netmask, in_d_network_addr
…

…
…
;get last ip adress of subnet & restore MSB of subnet in case
;it's clear to calculate using a correct netmask

alu[tmp, --, ~b, in_d_netmask] ;tmp=~netmask
alu[tmp, tmp, AND~, 1, <<31] ;tmp&=~(1<<31)

;ip_max_main=tmp|network_address

alu[ip_max_main, tmp, OR , in_d_network_addr]

26

Branch Instructions
Conditional branches

bcc[label#], opt_tok
Unconditional branches

br[label#], opt_tok
Other branches

br_bclr[reg, bit_p, label#], opt_tok
br=ctx[ctx, label#], opt_tok

br=byte[reg, byte, b_val, label#], opt_tok
br=signal[sig_name, label#], opt_tok
br_inp_state[state, label#], opt_tok

27

Branch Parameters
Condition codes

beq, bne, bge, blt, bge, bcc, etc

Optional token
Delay slots
defer[n], n=1, 2, 3

Max number of delay slots determined by
instruction type

28

Jumps
Computed branches (e.g., jump table)

jump[src, label#], opt_tok

Parameters
src

Jump table offset
GPR

label#
Jump table base address

opt_tok
defer[n]

targets[label1, label2, …, labeln]
Possible jump table locations

29

Control Flow Examples
Example 1: loops

.reg foo
…
/* foo initialized to 0*/
…
loop#:

alu[foo, foo, +, 1]
alu[--, foo, -, LOOP_COUNT_CONSTANT]
br!=0[loop#]

Example 2: contexts
br!=ctx[0, death#]
…
/* this code executed by thread 0 only */
…
death#:

ctx_arb[kill] ;this instruction kills the thread that executes it
nop
nop
nop
nop

30

DRAM Access Instructions
dram[cmd, xfer, op1, op2, cnt], opt_tok

dram[cmd, --, op1, op2, cnt], tok, opt_tok

Parameters
cmd: command code

read, write

rbuf_rd, tbuf_wr in second form

xfer: source/destination DRAM transfer register
op1, op2: restricted address operands
cnt: transfer size (1-8) in quadwords
tok: indirect_ref specifies RBUF/TBUF address
opt_tok: sig_done[sig_name], ctx_swap[sig_name]

31

SRAM Access Instructions
sram[cmd, xfer, op1, op2, cnt], opt_tok

sram[cmd, xfer, op1, op2], opt_tok
sram[cmd, --, op1, op2], opt_tok

Parameters
cmd: command code

read, write

incr, decr, swap, add, etc
enqueue, enqueue_tail, dequeue

xfer: source/destination SRAM transfer register
op1, op2: restricted address operands
cnt: transfer size (1-8) in longwords
opt_tok: sig_done[sig_name], ctx_swap[sig_name]

32

Scratchpad Instructions
scratch[cmd, xfer, op1, op2, cnt], opt_tok

scratch[cmd, xfer, op1, op2], opt_tok

Parameters
cmd: command code

read, write

incr, decr, swap, add, etc
put, get

xfer: source/destination SRAM transfer register
op1, op2: restricted address operands
cnt: transfer size (1-8) in longwords
opt_tok: sig_done[sig_name], ctx_swap[sig_name]

33

I/O Examples
// sram reads 4-byte words

.begin
// register declaration
.reg sram_address, $sxfer1, $sxfer2
.xfer_order $sxfer1, $sxfer2

immed[sram_address, 0x20] ; init sram_address
immed[$sxfer1,0xA0] ; init $sxfer1 reg

sram[write, $sxfer1, sram_address, 0,1],
ctx_swap[sram_sig_1]

sram[read, $sxfer2, sram_address, 0, 1],
ctx_swap[sram_sig_1]

.end

34

Data Plane Programming
Models

35

Microblocks
Data plane software components
Perform isolated network function

IPv4 forwarding
Packet Rx
Organized in “pipeline”
Communicate with adjacent microblocks and
control plane

Packet
Rx IPv4 Queue

Mgr Sched Packet
Tx

36

Microblock Groups
Multiple microblocks on same microengine
Packet transit logical, no inter-ME
communication
Organized in Dispatch Loop

Infinite loop
Microblocks executed in order for each packet

37

Pipeline model
Packet processing spread across multiple
microengines
AKA “Context Pipeline”
Extreme case: one Microblock per ME
Packet physically moves through pipeline

Packet
Rx IPv4 Queue

Mgr Sched Packet
Tx

ME0 ME1 ME2 ME3 ME4

38

Pool-of-Threads model
Each thread fully handles one packet
AKA “Functional Pipeline”
Packet Rx -> IPv4 ->Queue Mgr -> Sched -> Packet Tx

Packet Rx -> IPv4 ->Queue Mgr -> Sched -> Packet Tx

Packet Rx -> IPv4 ->Queue Mgr -> Sched -> Packet Tx

Packet Rx -> IPv4 ->Queue Mgr -> Sched -> Packet Tx

ME0

ME1

ME2

ME3

39

Mixed Models: Pipeline of Pools

Packet
Rx IPv4

IPv4

IPv4

Queue
Mgr Sched

Packet
Tx

Packet
Tx

ME0 ME5ME4ME1,2,3 ME6,7

40

References
IXP 2400/2800 Programming: Chapter 1
and 2
Programmer’s reference manual
Hardware’s reference manual

