
Middleboxes and NFV
15-441 Fall 2017

Profs Peter Steenkiste & Justine Sherry

Thanks to Scott Shenker, Sylvia
Ratnasamay, Peter Steenkiste,

and Srini Seshan for slides.

sli.do time…

Today
• Thanks for talking to the folks from the Eberly Center!

• CANDY POLL

• Quick midterm and mid-semester grade comments and

• You’ll get your tests back on Thursday

• Where we’re at in the course

• The lecture: Middleboxes and NFV

Midterm

Midterm
• Top score: 74/78.

Midterm
• Top score: 74/78.

• Therefore the test scores were calculated out of 74 points.

Midterm
• Top score: 74/78.

• Therefore the test scores were calculated out of 74 points.

• Median and Average were both 57 (77%)

Midterm
• Top score: 74/78.

• Therefore the test scores were calculated out of 74 points.

• Median and Average were both 57 (77%)

• You all are very good at BGP and IP Forwarding!

Midterm
• Top score: 74/78.

• Therefore the test scores were calculated out of 74 points.

• Median and Average were both 57 (77%)

• You all are very good at BGP and IP Forwarding!

• Will hand back tests on Thursday in class.

Mid-semester grades
• Calculated over HW1, P1, and Midterm

• Do not include HW2 or P1 Final Design Doc

• Includes 35% of the total points for the semester

• i.e.: lots of opportunities to improve your grade

• Grades were curved up but not down (no one was hurt by curving)

You are here.
Application Layer

You are here.

“From packets up to applications”

Next week++

“From packets down to bits and signals”

This week…

Breaking the model a little bit…

Enterprise Networks

“INTERNET”

google.com

http://google.com

Enterprise Networks

“INTERNET”

google.com

Router

http://google.com

Enterprise Networks

“INTERNET”

google.com

Router

Switch

http://google.com

Enterprise Networks

“INTERNET”

google.com

“Network infrastructure has
only one task: delivering

packets to their destination.”
Router

Switch

http://google.com

Enterprise Networks

“INTERNET”

google.com

“Network infrastructure has
only one task: delivering

packets to their destination.”
MYTHRouter

Switch

http://google.com

Enterprise Networks

“INTERNET”

We want to block traffic from senders
known to be dangerous.

google.com

http://google.com

Enterprise Networks

“INTERNET”

We want to block traffic from senders
known to be dangerous.

google.com

Firewall

http://google.com

Enterprise Networks

“INTERNET”

We want to make the web load faster.

google.com

http://google.com

Enterprise Networks

“INTERNET”

We want to make the web load faster.

google.com

Web
Proxy/Cache

http://google.com

Example: Web Proxy

Intercepts HTTP connections
and caches frequently
accessed content.

Maintains dual connections — one to client, one to server!
• If client requests content in cache, serve locally rather than sending

request to server.
• If client requests blocked content, deny the request.
• Recall: forward and reverse proxies (Lecture two weeks ago).

Enterprise Networks

“INTERNET”

We want to make bandwidth
consumption cheaper.

google.com

http://google.com

Enterprise Networks

“INTERNET”

We want to make bandwidth
consumption cheaper.

google.com

WAN
Optimizer

http://google.com

Example: WAN Optimizer
Compresses data so that it
uses less bandwidth.

Sits at gateway between enterprise and Internet.
• Outgoing traffic to other sites of the same company is compressed.
• Incoming traffic is uncompressed.
• (Think gzip!) Pittsburgh Tokyo

Enterprise Networks

“INTERNET”

We want to detect and prevent
attacks in web traffic and email.

google.com

http://google.com

Enterprise Networks

“INTERNET”

We want to detect and prevent
attacks in web traffic and email.

google.com

Intrusion
Detection

http://google.com

Example: Intrusion Prevention System

Detects anomalous or known-
dangerous traffic and blocks
those connections.

For each connection:
• Looks at port numbers, IP addresses and compares against blacklists.
• Reconstructs connection by stream and scans for malicious terms.
• Logs protocol, IP addresses, time of connection, etc.

…there are a lot of them!
• Network Address Translator

• Evolved Packet Gateway (EPC) Gateways

• Exfiltration Detection

• Forward and Reverse Proxies

• Firewalls

• Transcoders

• Intrusion Detection

• WAN Optimization

• Protocol Accelerators

• IPv4/IPv6 translators…

…there are a lot of them!
• Network Address Translator

• Evolved Packet Gateway (EPC) Gateways

• Exfiltration Detection

• Forward and Reverse Proxies

• Firewalls

• Transcoders

• Intrusion Detection

• WAN Optimization

• Protocol Accelerators

• IPv4/IPv6 translators…

Don’t even try to memorize all of these, just learn the
ones from the previous slides ;-)

Very widely deployed…
100000

10000

1000

100

10

1 All Middleboxes

L3 Routers

L2 Switches

Very Large
Large
Medium
Small

Very widely deployed…
100000

10000

1000

100

10

1 All Middleboxes

L3 Routers

L2 Switches

Very Large
Large
Medium
Small

One in three
devices is a
middlebox!

…in great heterogeneity!
100000

10000

1000

100

10

1 Firewalls

App. Firewalls

Wan Opt.

Proxies
App. Gateways

VPNs
Load Balancers

IDS/IPS

Very Large
Large
Medium
Small

…in great heterogeneity!
100000

10000

1000

100

10

1 Firewalls

App. Firewalls

Wan Opt.

Proxies
App. Gateways

VPNs
Load Balancers

IDS/IPS

Very Large
Large
Medium
Small

Many
types of

heterogenous
devices!

Where do middleboxes fit in the model?

Where do middleboxes fit in the model?

In what ways are middleboxes at the
application layer?

Where do middleboxes fit in the model?

In what ways are middleboxes at the
application layer?

In what ways are middleboxes at the
network layer?

MIDDLEBOXES ARE CONTROVERSIAL

The rest of this lecture

• The End to End Argument (aka, why middleboxes are controversial)

• Why we deploy middleboxes anyway

• Some challenges they leave us with

• A new movement called Network Functions Virtualization

The rest of this lecture

• The End to End Argument

• Why we deploy middleboxes anyway

• Some challenges they leave us with

• A new movement called Network Functions Virtualization

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

What if Zeeshan later reads the file
and find it is corrupted? What could

have gone wrong?

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.
The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.
If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.
Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.
The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.
Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example
An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of

How do we re-design our system to
make sure the file doesn’t get

corrupted?

B

Network

Program

File System

B

Network

Program

File System

B

Network

Program

File System

The End-to-End Argument

The End-to-End Argument
[If] the function in question can completely and correctly be

implemented with the knowledge and help of the application
standing at the endpoints of the communication system:

The End-to-End Argument
[If] the function in question can completely and correctly be

implemented with the knowledge and help of the application
standing at the endpoints of the communication system:

The End-to-End Argument
[If] the function in question can completely and correctly be

implemented with the knowledge and help of the application
standing at the endpoints of the communication system:

[Then] providing that questioned function as a feature of the
communication system [or lower layer] is not possible.

The End-to-End Argument
[If] the function in question can completely and correctly be

implemented with the knowledge and help of the application
standing at the endpoints of the communication system:

[Then] providing that questioned function as a feature of the
communication system [or lower layer] is not possible.

The End-to-End Argument
[If] the function in question can completely and correctly be

implemented with the knowledge and help of the application
standing at the endpoints of the communication system:

[Then] providing that questioned function as a feature of the
communication system [or lower layer] is not possible.

[However], sometimes an incomplete version of the function
provided by the communication system may be useful as a

performance enhancement.

Let’s say we had a perfectly reliable network

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Would that solve our reliability problem?

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.
The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.
If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.
Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.
The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.
Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example
An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Would that solve our reliability problem?

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.
The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.
If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.
Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.
The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.
Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example
An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Would that solve our reliability problem?

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.
The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.
If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.
Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.
The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.
Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example
An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Well, that wasn’t very helpful…

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

“End to End Check and Retry”

A B

Network

Program

File System

Network

Program

File System

Read file and its checksum from disk.
Verify file + checksum.

Send File AND Checksum.

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

“Careful File Transfer”

A B

Network

Program

File System

Network

Program

File System

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

Write file and checksum to disk.
Then read back and double-check that

checksum + file verify.

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry”

If Checksum doesn’t match?
Just ask Justine to re-send.

(ie, try all over again!)

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Would that solve our reliability problem?

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.SALTZER ET AL. End-to-End Arguments in System Design 3

5. Either of the hosts may crash part way through the transaction after performing an unknown
amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats? One approach
might be to reinforce each of the steps along the way using duplicate copies, timeout and retry,
carefully located redundancy for error detection, crash recovery, etc. The goal would be to reduce
the probability of each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat two requires writing correct programs, which task is quite
difficult, and not all the programs that must be correct are written by the file transfer application
programmer. If we assume further that all these threats are relatively low in probability – low
enough that the system allows useful work to be accomplished – brute force countermeasures
such as doing everything three times appear uneconomical.
The alternate approach might be called "end-to-end check and retry". Suppose that as an aid to
coping with threat number one, stored with each file is a checksum that has sufficient redundancy
to reduce the chance of an undetected error in the file to an acceptably negligible value. The
application program follows the simple steps above in transferring the file from A to B. Then, as
a final additional step, the part of the file transfer application residing in host B reads the
transferred file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the checksum of the
original. Only if the two checksums agree does the file transfer application declare the transaction
committed. If the comparison fails, something went wrong, and a retry from the beginning might
be attempted.
If failures really are fairly rare, this technique will normally work on the first try; occasionally a
second or even third try might be required; one would probably consider two or more failures on
the same file transfer attempt as indicating that some part of the system is in need of repair.
Now let us consider the usefulness of a common proposal, namely that the communication
system provide, internally, a guarantee of reliable data transmission. It might accomplish this
guarantee by providing selective redundancy in the form of packet checksums, sequence number
checking, and internal retry mechanisms, for example. With sufficient care, the probability of
undetected bit errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the careful file transfer
application.
The answer is that threat number four may have been eliminated, but the careful file transfer
application must still counter the remaining threats, so it should still provide its own retries based
on an end-to-end checksum of the file. And if it does so, the extra effort expended in the
communication system to provide a guarantee of reliable data transmission is only reducing the
frequency of retries by the file transfer application; it has no effect on inevitability or correctness
of the outcome, since correct file transmission is assured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.
Thus the argument: in order to achieve careful file transfer, the application program that performs
the transfer must supply a file-transfer-specific, end-to-end reliability guarantee – in this case, a
checksum to detect failures and a retry/commit plan. For the data communication system to go
out of its way to be extraordinarily reliable does not reduce the burden on the application
program to ensure reliability.

A too-real example
An interesting example of the pitfalls that one can encounter turned up recently at M.I.T.: One
network system involving several local networks connected by gateways used a packet checksum
on each hop from one gateway to the next, on the assumption that the primary threat to correct
communication was corruption of bits during transmission. Application programmers, aware of

SALTZER ET AL. End-to-End Arguments in System Design 2

venture, or perhaps redundantly, each doing its own version. In reasoning about this choice, the
requirements of the application provide the basis for a class of arguments, which go as follows:

The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the end points of the communication
system. Therefore, providing that questioned function as a feature of the communication
system itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the "end-to-end
argument." The following sections examine the end-to-end argument in detail, first with a case
study of a typical example in which it is used – the function in question is reliable data
transmission – and then by exhibiting the range of functions to which the same argument can be
applied. For the case of the data communication system, this range includes encryption, duplicate
message detection, message sequencing, guaranteed message delivery, detecting host crashes,
and delivery receipts. In a broader context the argument seems to apply to many other functions
of a computer operating system, including its file system. Examination of this broader context
will be easier if we first consider the more specific data communication context, however.

End-to-end caretaking
Consider the problem of "careful file transfer." A file is stored by a file system, in the disk
storage of computer A. Computer A is linked by a data communication network with computer
B, which also has a file system and a disk store. The object is to move the file from computer A's
storage to computer B's storage without damage, in the face of knowledge that failures can occur
at various points along the way. The application program in this case is the file transfer program,
part of which runs at host A and part at host B. In order to discuss the possible threats to the file's
integrity in this transaction, let us assume that the following specific steps are involved:
1. At host A the file transfer program calls upon the file system to read the file from the disk,

where it resides on several tracks, and the file system passes it to the file transfer program in
fixed-size blocks chosen to be disk-format independent.

2. Also at host A the file transfer program asks the data communication system to transmit the
file using some communication protocol that involves splitting the data into packets. The
packet size is typically different from the file block size and the disk track size.

3. The data communication network moves the packets from computer A to computer B.
4. At host B a data communication program removes the packets from the data communication

protocol and hands the contained data on to a second part of the file transfer application, the
part that operates within host B.

5. At host B, the file transfer program asks the file system to write the received data on the disk
of host B.

With this model of the steps involved, the following are some of the threats to the transaction that
a careful designer might be concerned about:
1. The file, though originally written correctly onto the disk at host A, if read now may contain

incorrect data, perhaps because of hardware faults in the disk storage system.
2. The software of the file system, the file transfer program, or the data communication system

might make a mistake in buffering and copying the data of the file, either at host A or host
B.

3. The hardware processor or its local memory might have a transient error while doing the
buffering and copying, either at host A or host B.

4. The communication system might drop or change the bits in a packet, or lose a packet or
deliver a packet more than once.

Lesson: If you can do it at the
“higher” layer, don’t bother

implementing it at a lower layer.

Lesson: If you can do it at the
“higher” layer, don’t bother

implementing it at a lower layer.

Don’t
waste your

time!

Lesson: If you can do it at the
“higher” layer, don’t bother

implementing it at a lower layer.

Don’t
waste your

time!

Avoid
causing

confusion.

We’ve already seen some examples in this class.

We’ve already seen some examples in this class.

TCP Congestion Control?

We’ve already seen some examples in this class.

TCP Congestion Control?

Circuit Switched Networking?

We’ve already seen some examples in this class.

TCP Congestion Control?

Circuit Switched Networking?

Packet fragment reassembly?

The End-to-End Argument
[If] the function in question can completely and correctly be

implemented with the knowledge and help of the application
standing at the endpoints of the communication system:

[Then] providing that questioned function as a feature of the
communication system [or lower layer] is not possible.

[However], sometimes an incomplete version of the function
provided by the communication system may be useful as a

performance enhancement.

The End-to-End Argument
[If] the function in question can completely and correctly be

implemented with the knowledge and help of the application
standing at the endpoints of the communication system:

[Then] providing that questioned function as a feature of the
communication system [or lower layer] is not possible.

[However], sometimes an incomplete version of the function
provided by the communication system may be useful as a

performance enhancement.

One
Exception!

A B

Network

Program

File System

Program

File System

What if 90% of my loss really was happening at the network layer?

Network

A B

Network

Program

File System

Program

File System

What if 90% of my loss really was happening at the network layer?

Network

A B

Network

Program

File System

Program

File System

What if 90% of my loss really was happening at the network layer?

Network

As a performance
optimization, you might
want to implement it in
the lower layer anyway

(redundantly).

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry” + A Reliable Network

The “Strong” End-to-End
Argument

It’s not just a waste of time to put
non-essential functionality at lower

layers: it’s actually harmful.

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry” + A Reliable Network

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry” + A Reliable Network

Slightly less bandwidth

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry” + A Reliable Network

Slightly less bandwidth
More latency

A B

Network

Program

File System

Network

Program

File System

“End to End Check and Retry” + A Reliable Network

Slightly less bandwidth
More latency

Some applications may be
constrained by the new functionality.

Firewalls and Intrusion Detection

Firewalls and Intrusion Detection
Good server

Firewalls and Intrusion Detection
Good server

Evil Server

Firewalls and Intrusion Detection
I need to protect my

users!

Firewalls and Intrusion Detection
I need to protect my

users!

Web traffic, email

Firewalls and Intrusion Detection
I need to protect my

users!

Web traffic, email

IRC, strange port numbers

Firewalls and Intrusion Detection
I need to protect my

users!

Only allow web
and email!

Firewalls and Intrusion Detection
I need to protect my

users!

But what if I
have a cool
new app?

The rest of this lecture

• The End to End Argument

• Why we deploy middleboxes anyway

• Some challenges they leave us with

• A new movement called Network Functions Virtualization

The rest of this lecture

• The End to End Argument

• Why we deploy middleboxes anyway

• Some challenges they leave us with

• A new movement called Network Functions Virtualization

Two Reasons We Deploy Middleboxes

• (1) It’s a fast, drop in way to upgrade network features.

• (2) It’s a centralized point of control.

(1) A fast way to upgrade your network

• Remember address-space exhaustion?

• IPv6 is the clean solution, but it takes a long time to upgrade
because everyone must update their infrastructure and code.

• The fast solution: Network Address Translators. Drop-in, no one
needs to make any changes (for the most part) except network
administrator.

(1) A fast way to upgrade your network
• Remember DDoS and attack traffic?

• Many proposals exist to upgrade routers so that receivers tell
routers to start blocking certain traffic sources. Once again… this
requires upgrades to routers and hosts — lots of changes.

• See “IP pushback” work if you’re curious

• The fast solution: Firewalls. Drop-in, no one needs to make any
changes (for the most part) except network administrator.

(2) A centralized point of control

• Network administrators want to enforce policies over how their
networks are used.

• “No one can host a botnet from within my network”: deploy and
IDS

• “All traffic is cached and compressed to save company $$ on
bandwidth.”: deploy a WAN Optimizer

(2) A centralized point of control
• Network administrators want to enforce policies over how their

networks are used, continued.

• Note that some of these features could be implemented by end
users! E2E would say to implement at the edge!

• But network administrators cannot enforce what happens on end
hosts: only what happens in the network.

• Hence, middleboxes.

So, in practice, we’re here:
100000

10000

1000

100

10

1 All Middleboxes

L3 Routers

L2 Switches

Very Large
Large
Medium
Small

The rest of this lecture

• The End to End Argument

• Why we deploy middleboxes anyway

• Some challenges they leave us with

• A new movement called Network Functions Virtualization

The rest of this lecture

• The End to End Argument

• Why we deploy middleboxes anyway

• Some challenges they leave us with

• A new movement called Network Functions Virtualization

Three practical challenges

• (1) Tussle

• (2) Compatibility

• (3) Complexity, Cost, and Management

Tussle

Tussle
• Basically: ISPs install middleboxes and users don’t always want them.

Tussle
• Basically: ISPs install middleboxes and users don’t always want them.

• One pressing example: censorship

Tussle
• Basically: ISPs install middleboxes and users don’t always want them.

• One pressing example: censorship

• Middleboxes are used to filter content in many parts of the world

Tussle
• Basically: ISPs install middleboxes and users don’t always want them.

• One pressing example: censorship

• Middleboxes are used to filter content in many parts of the world

• Users install VPNs or use tunnels to route through filters

Tussle
• Basically: ISPs install middleboxes and users don’t always want them.

• One pressing example: censorship

• Middleboxes are used to filter content in many parts of the world

• Users install VPNs or use tunnels to route through filters

• ISPs detect VPNs and block those too…

Tussle
• Basically: ISPs install middleboxes and users don’t always want them.

• One pressing example: censorship

• Middleboxes are used to filter content in many parts of the world

• Users install VPNs or use tunnels to route through filters

• ISPs detect VPNs and block those too…

• Users make VPNs look like benign traffic…

Tussle
• Basically: ISPs install middleboxes and users don’t always want them.

• One pressing example: censorship

• Middleboxes are used to filter content in many parts of the world

• Users install VPNs or use tunnels to route through filters

• ISPs detect VPNs and block those too…

• Users make VPNs look like benign traffic…

• The back and forth between users and providers is called “Tussle”

Tussle

Tussle
• Other Tussles:

Tussle
• Other Tussles:

• ISPs ban home users from hosting web servers

Tussle
• Other Tussles:

• ISPs ban home users from hosting web servers

• Users run servers over a port other than port 80

Tussle
• Other Tussles:

• ISPs ban home users from hosting web servers

• Users run servers over a port other than port 80

• ISPs rate-limit BitTorrent traffic

Tussle
• Other Tussles:

• ISPs ban home users from hosting web servers

• Users run servers over a port other than port 80

• ISPs rate-limit BitTorrent traffic

• BitTorrent uses “camouflaged” port numbers to make it harder
to detect/classify.

Compatibility

• Middleboxes make assumptions about how protocols work. What
happens when protocols change or new protocols are deployed?

• Need to upgrade the middlebox. But many don’t.

Compatibility
• Cool story from a colleague at Google:

• Google was testing the new QUIC protocol

• They changed how they were using some header fields in QUIC

• Deployed the new version of QUIC to Chrome

• Large fractions of the Internet stopped being able to use QUIC!

• The problem? A major middlebox vendor saw the changed ports,
determined the traffic was non-standard and maybe dangerous. Blocked
the traffic.

Manageability, Cost, and Complexity

• Middleboxes are custom, hardware-based devices.

• Slow to upgrade, and expensive — $10ks

• Have to be physically wired together and configured one-by-one

• Time consuming and confusing

• Every device has its own management interface and toolchain!

The rest of this lecture

• The End to End Argument

• Why we deploy middleboxes anyway

• Some challenges they leave us with

• A new movement called Network Functions Virtualization

Imagine cloud computing if it were deployed like
middleboxes.

So you want to deploy a web service.

Imagine cloud computing if it were deployed like
middleboxes.

So you want to deploy a web service.

So you want to deploy a web service.

Imagine cloud computing if it were deployed like
middleboxes.

So you want to deploy a web service.

Imagine cloud computing if it were deployed like
middleboxes.

So you want to deploy a web service.

Imagine cloud computing if it were deployed like
middleboxes.

So you want to deploy a web service.

Imagine cloud computing if it were deployed like
middleboxes.

This is ridiculous and not what anybody
does for cloud services. But it’s what we

were doing with middleboxes!

What we actually do in cloud computing.

General-purpose hardware.

What we actually do in cloud computing.

General-purpose hardware.

What we actually do in cloud computing.

General-purpose hardware.

What we actually do in cloud computing.

General-purpose hardware.

What we actually do in cloud computing.

General-purpose hardware.

Services run in software.

Installation is a “click” — no cabling required.

Can re-use infrastructure for different tasks.

2012: ETSI Network Functions Virtualization

Network traffic routed through
general-purpose hardware.

2012: ETSI Network Functions Virtualization

Network traffic routed through
general-purpose hardware.

2012: ETSI Network Functions Virtualization

Network traffic routed through
general-purpose hardware.

“Network Functions”

Benefits of NFV

Benefits of NFV
• Re-use hardware resources for many different applications

Benefits of NFV
• Re-use hardware resources for many different applications

• “Scale on demand” as load changes

Benefits of NFV
• Re-use hardware resources for many different applications

• “Scale on demand” as load changes

• Easier and more generic management tools

Benefits of NFV
• Re-use hardware resources for many different applications

• “Scale on demand” as load changes

• Easier and more generic management tools

• Fast to upgrade and change software deployments

Benefits of NFV
• Re-use hardware resources for many different applications

• “Scale on demand” as load changes

• Easier and more generic management tools

• Fast to upgrade and change software deployments

• Generic hardware usually -> cheaper, too!

Rough NFV System Architecture

Rough NFV System Architecture

Rough NFV System Architecture

Rough NFV System Architecture

Rough NFV System Architecture

Rough NFV System Architecture

Rough NFV System Architecture

Software Switch

Rough NFV System Architecture

Software Switch

Multi-node NFV Architecture

Somehow we should stitch
together multiple servers, too!

Multi-node NFV Architecture

Somehow we should stitch
together multiple servers, too!

NFV is a big trend in industry right now!

NFV standardization body

Startup I worked at last year

Open Source project
to develop NFV

platform

Middleboxes: Summary
• Middleboxes are the de-facto way to insert new functionality into

networks.

• Very widely deployed: 1/3 network devices is a middlebox

• Challenging to manage (upgrades, compatibility, complexity) and at
times controversial (tussle).

• NFV is a new movement to build middleboxes in software using
lessons from cloud computing.

