

15-441
15-641 Computer Networking

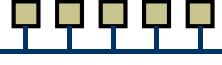
Lecture 3: Packet-Switched Networks
Justine Sherry
Peter Steenkiste
Fall 2017
www.cs.cmu.edu/~prs/15-441-F17

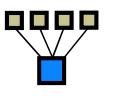
1

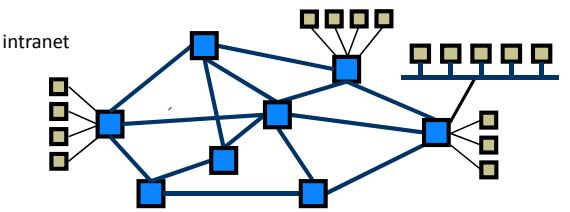
Goal and Outline

- Goal: gain a basic understanding of how you can build a (small) packet switched network
 - Focus is to convince you that this is feasible
 - A bit more detail later in the course for Ethernet and WiFi
- Physical and Datalink functions
- Physical layer: Modulation
- Datalink
 - Medium access control
 - Scaling up

2


Today's Story


Two nodes


One wire

Or more wires

An intranet

3

What Do We Need?

- Physical layer:
 - Modulation: send a stream of bits to a receiver using an electromagnetic signal
 - Coding: add redundancy for error detection, meet electrical constraints, ...
- Datalink layer:
 - Framing: identify packet boundaries and headers
 - Error control: error detection and correction
 - Media access control: arbitrating access to the "link"
 - Bridging, switching, ...: extending network size
- Described "by example"

4

Outline

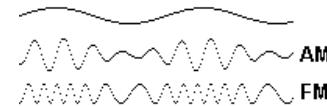
- PHY and DL functions
- Modulation
- Datalink layer
 - Media access control
 - Scaling up

5

Transferring Information

- Information transfer is a physical process

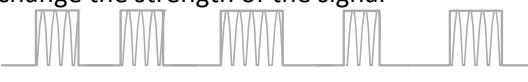
“The wireless telegraph is not difficult to understand.
The ordinary telegraph is like a very long cat.


You pull the tail in New York, and it meows in Los Angeles.
The wireless is exactly the same, only without the cat.”

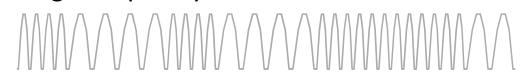
- In this class, we generally care about
 - Electrical signals (on a wire)
 - Optical signals (in a fiber)
 - RF signals (wireless)
 - More broadly: electromagnetic signals

6

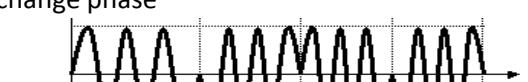
What is Modulation?


- The sender changes a signal in a way that the receiver can recognize - conveys information
- Ways to modulate a signal (think: sinusoidal wave)
 - Change frequency, phase, or amplitude
- Similar to AM/FM radio:
 - But we encode bits!
- Analogy from music:
 - Volume: Amplitude Modulation (AM)
 - Pitch: Frequency Modulation (FM)
 - Timing: Phase Modulation (PM)

7


Binary Modulation

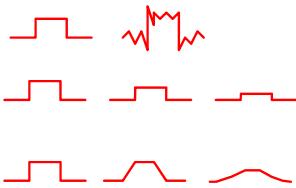
- AM: change the strength of the signal


0 0 1 1 0 0 1 1 0 0 0 1 1 1 0

- FM: change frequency:

0 1 1 0 1 1 0 0 0 0 1

- PM: change phase


1 0 1 0 1 0 0 1 0 0

8

Looks Straightforward, but ...

Bad things happen to the signal as it travels to receiver:

- Noise: “random” energy is added to the signal
- Attenuation: some of the signal’s energy leaks away
- Dispersion: signal is distorted due to frequency-dependent effects distorts the signal
- These effects get worse with distance and depend on the transmission medium

What is the impact of a Bad Signal?

- The receiver may no longer be able to determine what bits were sent, resulting in bit errors
 - Bit error rate increases with the bit rate
- The result is that we need to limit the bit rate and/or the length of the links
- For wired network, that standard specifies both
 - E.g., standards for 10 Mbs, 100 Mbs, .. Ethernet
- For wireless networks many other factors impact the bit error rate – requires more complex solutions
 - Wait for wireless lectures

10

Sketch of Solution

- Solutions for optimizing bandwidth and recovering from errors fall in two classes:
 1. Retransmission by a higher layer protocol
 2. Coding: add redundancy to the bit stream so the receiver can recover from the errors (FEC)
- Can be used in any layer of the stack, but a common approach is:
 1. Retransmission in datalink or transport protocol
 2. FEC in physical layer

11

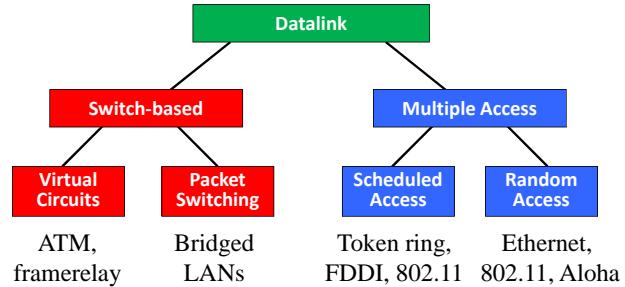
Outline

- PHY and DL functions
- Modulation
- Datalink layer
 - Media access control
 - Scaling up

12

Datalink Functions

- Framing: encapsulating a network layer datagram into a bit stream.
 - Add header, mark and detect frame boundaries
- Flow control: avoid that sender outruns the receiver
- Error control: error detection and correction to deal with bit errors.
 - May also include other reliability support, e.g. retransmission
- Media access: controlling which frame should be sent next over a link.
- Bridging, switching: extend the size of the network

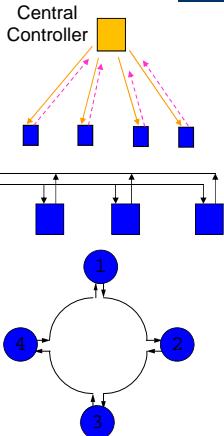

13

Datalink Architectures

- Multiple access networks - contention based.
 - Multiple hosts are sharing the same transmission medium
 - Used in LANs and wireless
 - Access control is distributed and much more complex
- Switches connected by point-to-point links -- store-and-forward.
 - Used in WAN, LAN, and for home connections
 - Conceptually similar to “routing”
 - But at the datalink layer instead of the network layer
 - MAC = (local) scheduling

Datalink Classification


Multiple Access: How to Share a Wire (or the wireless ether)


- Problem: how do you prevent nodes from “talking” at the same time – causes a “collision”
- Two classes of solutions:
 - Explicit coordination: schedule transmissions sequentially
 - Randomly access medium: send and hope you get lucky

How Can We Avoid Collisions?

- Ask for permission
 - “Coordinator” picks who goes next if there is contention
 - Many protocol solutions exist
 - FDDI, WiFi PCF, ...
- Go for it
 - But listen before you talk
 - But sometimes people start talking at the same time
 - Randomly try again
 - Ethernet, WiFi DCF, ...

Scheduled Access MACs – more later

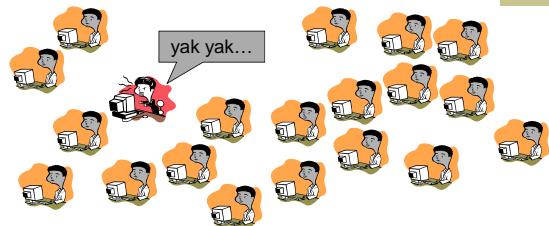
- Reservation systems
 - Central controller
 - Distributed algorithm, e.g. using reservation bits in frame
- Polling: controller polls each nodes
- Token ring: token travels around ring and allows nodes to send one packet
 - Distributer version of polling
 - FDDI, ...

Random Access Protocols – more later

- When a node has a packet to send
 - Transmit at full channel data rate R
 - No *a priori* coordination among nodes
- If you are lucky, receiver will receive packet, but ..
- Multiple simultaneous transmissions \rightarrow “collision”
- Random access MAC protocol specifies:
 - How to avoid and/or detect collisions
 - How to recover from collisions (e.g., via retransmissions)
- Examples of random access MAC protocols:
 - Slotted ALOHA and ALOHA
 - CSMA/CD (~Ethernet) and CSMA/CA (~WiFi)

How Well Do These Work?

- Random access is very effective in practice
 - Most LANs are under-utilized
 - Zero overhead and delay when there is no contention
- Scheduled access protocols tend to have non-trivial overhead and delay
 - Even if there is no contention!
- Transmission is fairly reliable in practice
 - Protocols can detect collisions reliably and corrupted packets are transmitted
 - Error rates due to random bit errors are very low in practice

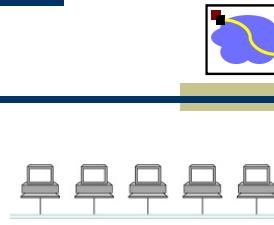

Outline

- PHY and DL functions
- Modulation
- Datalink layer
 - Media access control
 - Scaling up
 - Number of nodes
 - Bit rate

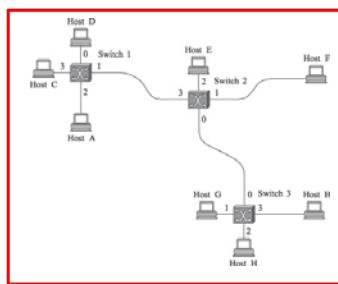
26

Scaling Up the Number of Nodes

- What breaks when we keep adding people to the same “wire”?


28

Datalink Architectures


- Multiple access networks - contention based.

- Multiple hosts are sharing the same transmission medium
- Used in LANs and wireless
- Access control is distributed and much more complex

- Switches connected by point-to-point links -- store-and-forward.

- Used in WAN, LAN, and for home connections
- Conceptually similar to “routing”
 - But at the datalink layer instead of the network layer
- MAC = (local) scheduling

Scaling Up the Ethernet Speed

- Technology improvements lead to higher bit rates: 10Mbps, 100Mbps, 1Gbps, 40 Gbps, ...
- Problem: carrier sense becomes completely ineffective
 - For example, for 40 Gbps links
 - 0.3 microsec to send a maximum sized Ethernet frame
 - forget about carrier sense
- Solution: use a bridge or switch-based design
 - And call it Ethernet!

Scaling Up Solution

- Break up the network in smaller networks
- Smaller “collision domain” - fewer nodes per network
 - Also shorter wires
- Networks can transmit packet in parallel – more capacity
- Uses “bridges” (switches) to connect the networks
 - Bridges must forward the packets when needed
- Challenge: how do you know which packets to copy and where?

30

Frame Forwarding

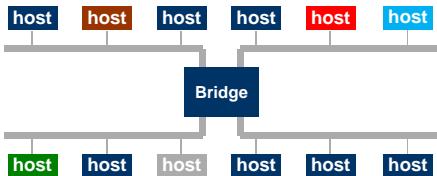
MAC Address	Port	Age
A21032C9A591	1	36
99A323C90842	2	01
8711C98900AA	2	15
301B2369011C	2	16
695519001190	3	11

- Bridge/switch has a table that shows for each MAC Address which port to use for forwarding
- For every packet, the bridge “looks up” the entry for the packet’s destination MAC address and forwards the packet on that port.
 - Other packets are broadcast – why?
- Timer is used to flush old entries

31

Switch Architecture

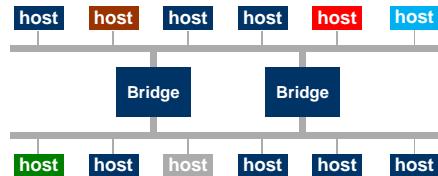
- Packets come in one interface, forwarded to output interface based on address.
 - Same idea for bridges, switches, routers: address look up differs
- Control processor manages the switch and executes higher level protocols.
 - E.g. routing, management, ...
- The switch fabric directs the traffic to the right output port.
- The input and output ports deal with transmission and reception of packets.


Transparent Bridges

- Design goals:
 - Self-configuring without hardware or software changes
 - Bridge does not impact the operation of the individual LANs, i.e., a set of bridged LANs acts as a single LAN
- Three parts to making bridges transparent:
 - 1) Forwarding frames
 - 2) Learning addresses/host locations
 - 3) Spanning tree algorithm

33

Learning Bridges


- Manually filling in bridge tables?
 - Time consuming, error-prone
- Keep track of source address of packets arriving on every link, showing what segment hosts are on
 - Fill in the forwarding table based on this information

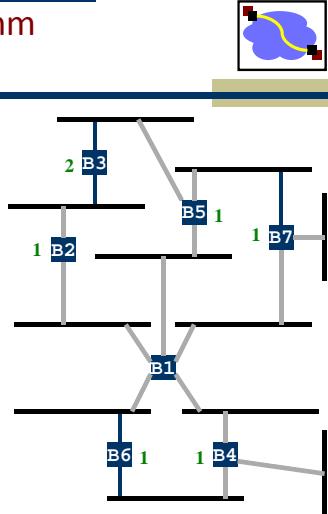
34

But Does it Scale?

- More complex topologies can provide redundancy.
 - Especially important in larger networks
- But this creates a problem: loops!
- Solution: spanning tree

35

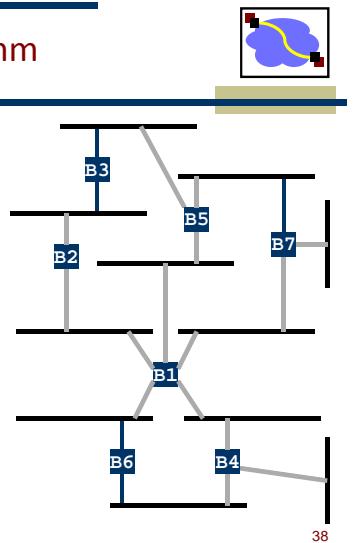
Spanning Tree Protocol Overview


Embed a tree that provides a single unique path to each destination:

- 1) Elect a single bridge as a root bridge
- 2) Each bridge calculates the distance of the shortest path to the root bridge
- 3) Each LAN identifies a *designated bridge*, the bridge closest to the root. It will forward packets to the root.
- 4) Each bridge determines a *root port*, which will be used to send packets to the root
- 5) Identify the ports that form the spanning tree

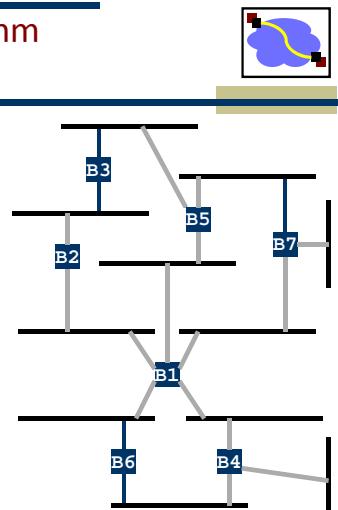
36

Spanning Tree Algorithm Steps


- Root of the spanning tree is the bridge with the lowest identifier.
 - All ports are part of tree
- Each bridge finds shortest path to the root.
 - Remembers port that is on the shortest path
 - Used to forward packets
- Select for each LAN the designated bridge that has the shortest path to the root.
 - Identifier as tie-breaker
 - Responsible for that LAN

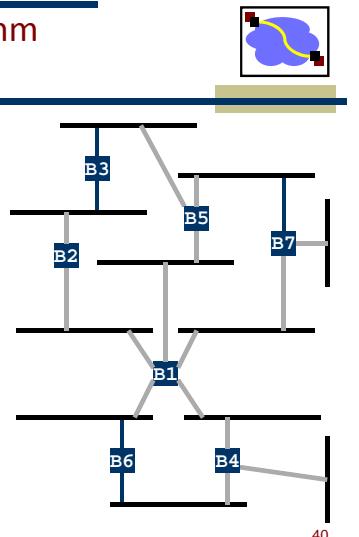
37

Spanning Tree Algorithm


- Each node sends configuration message to all neighbors.
 - Identifier of the sender
 - Id of the presumed root
 - Distance to the presumed root
 - E.g. B5 sends (B5, B5, 0)
- When B receives a message, it decides whether the solution is better than their local solution.
 - A root with a lower identifier?
 - Same root but lower distance?
 - Same root, distance but sender has lower identifier?
- After convergence, each bridge knows the root, distance to root, root port, and designated bridge for each LAN.

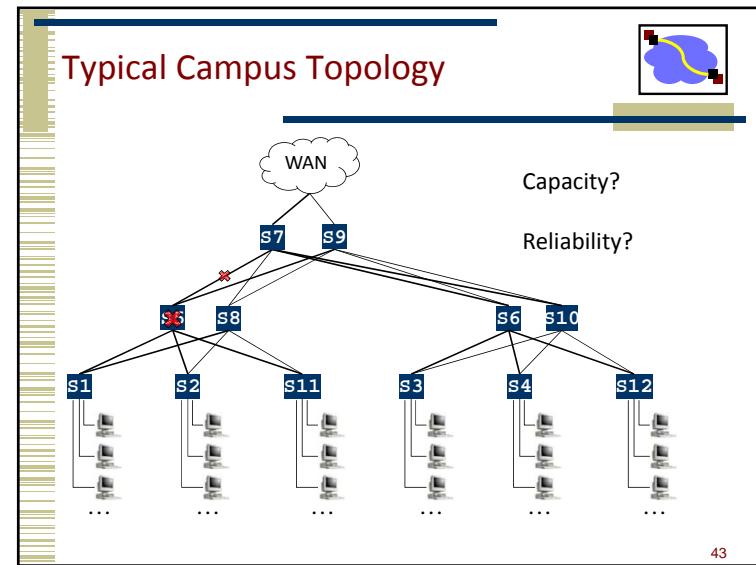
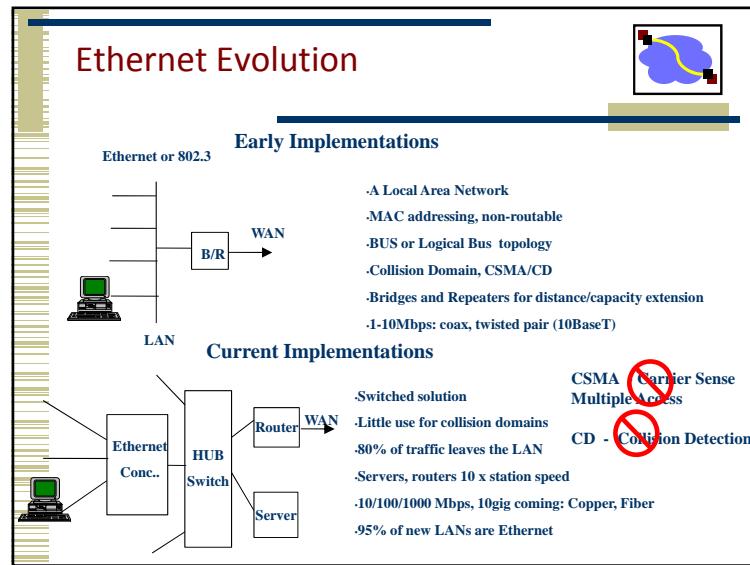
38

Spanning Tree Algorithm (part 2)


- Each bridge B can now select which of its ports make up the spanning tree:
 - B's root port
 - All ports for which B is the designated bridge on the LAN
- Bridges can not configure their ports.
 - Forwarding state* or *blocked state*, depending on whether the port is part of the spanning tree
- Root periodically sends configuration messages and bridges forward them over LANs they are responsible for.

39

Spanning Tree Algorithm Example



- Node B2:
 - Sends (B2, B2, 0)
 - Receives (B1, B1, 0) from B1
 - Sends (B2, B1, 1) "up"
 - Continues the forwarding forever
- Node B1:
 - Will send notifications forever
- Node B7:
 - Sends (B7, B7, 0)
 - Receives (B1, B1, 0) from B1
 - Sends (B7, B1, 1) "up" and "right"
 - Receives (B5, B5, 0) - ignored
 - Receives (B5, B1, 1) - better
 - Continues forwarding the B1 messages forever to the "right"

40

Ethernet Switches

- Bridges make it possible to increase LAN capacity.
 - Packets are no longer broadcasted - they are only forwarded on selected links
 - Adds a switching flavor to the broadcast LAN
- Ethernet switch is a special case of a bridge: each bridge port is connected to single host.
 - Simplifies the protocol and hardware used (only two stations on the link) – no longer full CSMA/CD
 - Can make the link full duplex (really simple protocol!)
 - Can have different port speeds on the same switch

