
Angels (Open SSL)
and D(a)emons

PALLABI GHOSH
(PALLABIG@ANDREW.CMU.EDU)

15-441 COMPUTER NETWORKS
RECITATION 4

Project 1 Final Submission

(1)  SSL
(2)  CGI
(3)  Daemonize

Extras

ssl_example.c

ssl_client.py

daemonize.c

(on course website)

SSL

Getting a...

Domain Name

Create a Domain Name

● Get a free domain name from No-IP

● Use your Andrew ID as the hostname

Get the Update Client

● You don't have root, so...
●  Just build (make), don't install (make install)
●  Run manually when your IP changes

Create No-IP Conf File

[dnaylor@unix3 ~/noip-2.1.9-1]$./noip2 -C -c noip.conf

Auto configuration for Linux client of no-ip.com.

Please enter the login/email string for no-ip.com <username>

Please enter the password for user '<username>' ****************

Only one host [dnaylor.no-ip.biz] is registered to this account.

It will be used.

Please enter an update interval:[30]

Do you wish to run something at successful update?[N] (y/N)

New configuration file 'noip.conf' created.

./noip2 -C -c noip.conf

Update Your IP Address

[dnaylor@unix3 ~/noip-2.1.9-1]$./noip2 -c noip.conf -i 108.17.82.243

IP address detected on command line.

Running in single use mode.

./noip2 -c noip.conf -i 108.17.82.243

Getting a...

Certificate

15-441 Certificate Authority

http://gs11697.sp.cs.cmu.edu/keyserver
Example	

You Need 3 Things

1) CA certificate

2) Your private key

3) Your certificate

Add CA Cert to Your System/
Browser

e.g., add to OSX Keychain

Implementing an...

SSL Server

What is SSL?
● Standard behind secure communication on the
Internet.
● Provides confidentiality & integrity
● Sits between transport & application

SSL

Transport

SSL

Transport

OpenSSL Toolkit

● Command line tools, SSL library, and crypto
library
● Can do a lot more than SSL

●  Message digests
●  Encryption and decryption of files
●  Digital certificates
●  Digital signatures
●  Random number generation

SSL Server In a Nutshell
● Use the OpenSSL library, here is a link to their documentation.

●  Create a second server socket in addition to the first one, use the passed in SSL port
from the command line arguments.

●  Add this socket to the select() loop just like your normal HTTP server socket.

●  Whenever you accept connections, wrap them with the SSL wrapping functions.

●  Use the special read() and write() SSL functions to read and write to these special
connected clients

●  In the select() loop, you need to know if a socket you are dealing with is SSL wrapped
or not

●  Use appropriate IO depending on the 'type' of socket---although use select() for all fd's

●  Use your private key and certificate file that you obtained earlier.

Open SSL headers
/* OpenSSL headers */

#include <openssl/bio.h>

#include <openssl/ssl.h>

#include <openssl/err.h>

Initialization Steps

● Global System Initialize
●  SSL_library_init()

●  SSL_load_error_strings()

● Initialize SSL_METHOD and SSL_CTX
●  meth=SSLv23_method();

●  ctx=SSL_CTX_new(meth);
● Loading keys

●  SSL_CTX_use_certificate_file(...)

●  SSL_CTX_use_PrivateKey_file(...)

Global Initialization

● SSL_library_init()

●  registers the available SSL/TLS ciphers and
digests.

● SSL_load_error_strings()

●  Provide readable error messages.

SSL_METHOD

● To describe protocol versions
● SSLv1, SSLv2 and TLSv1

SSL_METHOD* meth = TLSv1_method();

SSL_CTX

● Data structure to store keying material
● Reused for all connections; make ONE for your
server

SSL_CTX* ctx = SSL_CTX_new(meth);

SSL_CTX_use_certificate_file()

● Loads the first certificate stored in file into ctx.
● The formatting type of the certificate must be
specified from the known types

●  SSL_FILETYPE_PEM
●  SSL_FILETYPE_ASN1.
●  Our CA generates files of PEM format

● int SSL_CTX_use_certificate_file(SSL_CTX *ctx, const char *file, int
type);

SSL_CTX_use_PrivateKey_file()

● Adds the first private key found in file to ctx.
● The formatting type of the certificate must be
specified from the known types:

●  SSL_FILETYPE_PEM
●  SSL_FILETYPE_ASN1.
●  Our CA generates files of PEM format

● int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, int
type);

Wrapping Connections

● Create new SSL structure using SSL_new()

● Connect it to the socket using SSL_set_fd()

● Perform handshake using SSL_accept()

● Read and write using SSL_read() and SSL_write()

● Perform shutdown at the end, also need to clear state and
close underlying I/O socket etc.

● As always, check for return value and handle errors
appropriately!

SSL_new()

● Creates a new SSL structure
● Create one per connection
● Inherits the settings of the underlying context.

SSL* ssl = SSL_new(ctx);

SSL_set_fd()

● Tell the SSL object which socket it will wrap

int SSL_set_fd(SSL *ssl, int fd);

SSL_accept

● SSL_accept - wait for a TLS/SSL client to initiate
a TLS/SSL handshake

int SSL_accept(SSL *ssl)

● (Do this after a standard accept().)

SSL_read and SSL_write

● SSL_read to read bytes from a TLS/SSL connection
●  int SSL_read(SSL *ssl, void *buf, int num);

● SSL_write to write bytes to a TLS/SSL connection
●  int SSL_write(SSL *ssl, const void *buf, int num);

● NOTE:
●  The data are received in records (with a maximum record size

of 16kB for SSLv3/TLSv1).

●  Only when a record has been completely received, it can be
processed (decryption and integrity check)

SSL_shutdown

● Shuts down an active TLS/SSL connection.

●  int SSL_shutdown(SSL *ssl);

● (Then do a standard close().)

BIO - Optional

● I/O abstraction provided by OpenSSL
● Hides the underlying I/O and can set up
connection with any I/O (socket, buffer, ssl etc)
● BIOs can be stacked on top of each other using
push and pop!
● NOTE: You don't have to necessarily use BIO for
this project! The next few slides describe creating
BIO and working with it.

BIO_new()

● Returns a new BIO using method type.
● Check BIO_s_socket(), BIO_f_buffer(), BIO_f_ssl()

● Check BIO_new_socket()

●  BIO * BIO_new(BIO_s_socket());

BIO_set_fd(sbio, sock, BIO_NOCLOSE);

SSL_set_bio()

● Connects the BIOs rbio and wbio for the read and
write operations of the TLS/SSL (encrypted) side
of ssl

void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio)

 Example of Stacking BIOs

 buf_io = BIO_new(BIO_f_buffer());

 /* create a buffer BIO */

 ssl_bio = BIO_new(BIO_f_ssl());

/* create an ssl BIO */

 BIO_set_ssl(ssl_bio, ssl, BIO_CLOSE);

/* assign the ssl BIO to SSL */

 BIO_push(buf_io, ssl_bio);

BIO_read() and BIO_write()

● Attempts to read len bytes from BIO b and places
the data in buf.
● int BIO_read(BIO *b, void *buf, int len);

● Attempts to write len bytes from buf to BIO b.
● int BIO_write(BIO *b, const void *buf, int len);

SSL
Questions?

Daemonizing

Orphaning

● Fork the process to create a copy (child)
● Let parent exit!
● The child will become child of init process

●  Start operating in the background

● int pid = fork();

● if (pid < 0) exit(EXIT_FAILURE); /* fork error */

● if (pid > 0) exit(EXIT_SUCCESS); /* parent exits */

● /* child (daemon) continues */

Process Independence

● Process inherits parent's controlling tty; need to
detach
● Server should not receive signals from the
process that started it
● Operate independently from other processes

● setsid() /*obtain a new process group*/

Close File Descriptors

● Close all open descriptors inherited
 int i;

 for (i = getdtablesize(); i >= 0; --i)

 close(i);

● Connect standard I/O descriptors (stdin 0, stdout
1, stderr 2) to /dev/null
● i = open(“/dev/null”,O_RDWR); /* open stdin */

● dup(i) /* stdout */

● dup(i) /* stderr */

File Creation Mask

● Servers run as super-user
● Need to protect the files they create
● File creation mode is 750 (complement of 027)

umask(027);

Running Directory

● Server should run in a known directory

chdir(“/servers/”);

Mutual Exclusion

● We want only one copy of the server (file locking)

● Record pid of the running instance!
●  'cat lisod.lock' more efficient than 'ps -ef | grep lisod'

● 

 lfp = open(lock_file, O_RDWR|O_CREAT, 0640);

 if (lfp < 0)

 exit(EXIT_FAILURE); /* cannot open */

 if (lockf(lfp, F_TLOCK, 0) < 0)

 exit(EXIT_SUCCESS); /* cannot lock */

 sprintf(str, "%d\n", getpid());

 write(lfp, str, strlen(str)); /*record pid to lockfile */

Logging

● You sent stdout and stderr to /dev/null, so you
need to log to a file!

Daemonizing
Questions?

