
Learning the Pythonic Way
Matt Mukerjee

David Naylor

Ben Wasserman

15-441: Computer Networks

Extras

quicksort.py

webapp.py

The Man, The Legend: Zed Shaw

So, he made a web server too.
It's called mongrel2.

Oh, and Learning Python the Hard Way [LPTHW].

and... Programming, Motherfuckers...

Need I say more?

Why Python?

● My job is to convince you that:
● Python is incredibly easy to program in
● Python “comes with batteries”
● Python enables rapid prototyping
● All your pseudo-code are belong to Python

● Practicality?
● Systems scripting language of choice
● Alongside Perl and Ruby; OK, fine

Let's do this.
One at a time.

All your pseudo-code are belong to Python

Wikipedia: What is Quicksort?

And...Pseudo-what-Python!?

def quicksort(array):

 less = []; greater = []

 if len(array) <= 1:

 return array

 pivot = array.pop()

 for x in array:

 if x <= pivot: less.append(x)

 else: greater.append(x)

 return quicksort(less)+[pivot]+quicksort(greater)

Really? Yes!

>>> quicksort([9,8,4,5,32,64,2,1,0,10,19,27])

[0, 1, 2, 4, 5, 8, 9, 10, 19, 27, 32, 64]

Python “comes with batteries”

There's an app a library for that
● import httplib

● HTTP protocol client

● Test your web servers!

● Also: ftplib, poplib, imaplib, nntplib, smtplib...

● import os and import sys

● misc. OS interfaces, and system-specific parameters and functions

● import random

● Generate pseudo-random numbers

● Sampling, shuffling, etc. – good for testing

● import socket

● First test script used this for PJ1CP1

● also SimpleHTTPServer, BaseHTTPServer...

● import fileinput → fileinput.input() → iterable

● Reads lines from stdin, files listed on command line, etc.

Python enables rapid prototyping

Give me a dynamic web app NOW
from flask import Flask

app = Flask(__name__)

@app.route("/")

def hello():

 return "Hello World!"

if __name__ == "__main__":

 app.run()

Python is incredibly easy to program in

Use the Interpreter

● Code and experiment interactively
● Use help()
● Explore functionality and ideas
● Then code in your main editor

Just one thing

● Whitespace matters

● Defines blocks → C-world thinks { }
● Use spaces
● 4 spaces per indentation level

● spaces > tab → just be consistent
● Really though, generally aids readablity
● Set your editor preferences ahead of time

The Colon

● Required for if/for/while/with/def/class
statements

● Enhances readability
● Has English meaning
● Helps auto-indenting editors
● From the Python Design FAQ

Starting a Script and Comments

● Start with:

● #!/usr/bin/env python

● Then you can chmod +x script.py
● The #! is a special character combination
● Tells the OS how to execute a file

● Comments start with a #
● They go to the end of the line

Math – Business as Usual

● import math → extra math functions
● Convert between: int() and float()
● Convert to string: str()

>>> 2 * 8

16

>>> 4 / 3

1

>>> 4 / 3.

1.3333333333333333

>>> 2 ** 4

16

>>> 18 % 3

0

>>> 18 % 4

2

>>> float(4) / 3

1.3333333333333333

>>> float(4 / 3)

1.0

>>> int(4 / 3.)

1

>>> str(2**4)

'16'

Danger: Division from the Future
● Python 3 is coming...and __future__
● Yes, basic math changes...

>>> from __future__ import division

>>> 6 / 7 # defaults to float

0.8571428571428571

>>> 6 // 7 # “floor” division

0

>>> 6 // 7.

0.0

>>> 6.5 // 7

0.0

>>> 7. // 7

1.0

>>> 7 // 7

1

Danger: Division from the Future

● Always read the top of a script first

SyntaxError: from _future_ imports must

occur at the beginning of the file

Booleans

● True/False – actual values
● Logical Operators

● and – not && (although & is set and bit and)
● or – not || (although | is set and bit or)
● not – not ~ (although ~ is bit not)
● As expected... >>> True and True

True

>>> True or False

True

>>> not True

False

>>> not False

True

Lists
● Think arrays of arbitrary objects—can mix and match type!
● Sorting

sorted(x) – returns a new list
x.sort() – sorts in place

>>> x = [3, 5, 7, 2, 8, 1, 4, 9, 6]

>>> sorted(x)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> x

[3, 5, 7, 2, 8, 1, 4, 9, 6]

>>> x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Lists

● Comprehensions – construct lists dynamically; they nest too!

● Functional Programmers: think map()
● >>> evens = [x*2 for x in xrange(10)]

● >>> evens

● [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

● >>> evens = [x for x in xrange(10) if x % 2 == 0]

● >>> evens

● [0, 2, 4, 6, 8]

Lists

● Slicing – cutting up lists and other iterables (strings etc.)

 >>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> x[:] # copy x

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> x[-1] # last position in list

9

>>> x[0:3] # 0th through 2nd positions

[0, 1, 2]

>>> x[1:] # copy starting at 1st position

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> x[:4] # copy up to 3rd position

[0, 1, 2, 3]

Lists

● Stacks and Queues – LIFO and FIFO – lists are just so versatile

>>> x = []

>>> x.append(0)

>>> x.append(1)

>>> x.pop(0)

0

>>> x.append(2)

>>> x.pop(0)

1

>>> x = []

>>> x.append(0)

>>> x.append(1)

>>> x.pop()

1

>>> x.append(2)

>>> x.pop()

2

Dictionaries
● Key-Value Storage – arbitrary keys, arbitrary values

● del – remove object from dictionary or list

>>> d = {'a' : 0, 'b' : 1, 2 : 0}

>>> d[2]

0

>>> d['a']

0

>>> d['b']

1

>>> del d['b']

>>> d

{'a': 0, 2: 0}

Dictionaries

● len() – get length of dictionary or list
● keys(), values() – get lists of these
● key in d – membership in dictionary or list

>>> d = {'a' : 0, 'b' : 1, 2 : 0}

>>> len(d)

3

>>> d.keys() # note, no ordering

['a', 2, 'b']

>>> d.values() # ordering...

[0, 0, 1]

>>> 'a' in d

True

>>> 'x' in d

False

Tuples and Strings = Sequences

● Tuples are just values separated by ','
● They are both (strings too) immutable
● Otherwise, they behave like lists

>>> t = ('x', 'y')

>>> t[0] = 2

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

>>> t[0]

'x'

>>> t[1]

'y'

Tuples: Packing and Unpacking

● Quick and easy way to name values

>>> position = 249,576

>>> x,y = position

>>> x

249

>>> y

576

Sets: Creating
s1 = set([1, 1, 1, 2, 3, 4, 5])

>>> s1

set([1, 2, 3, 4, 5])

>>> s1.add(4)

>>> s1

set([1, 2, 3, 4, 5])

>>> s1.add(7)

>>> s1

set([1, 2, 3, 4, 5, 7])

>>> sorted(s1)

[1, 2, 3, 4, 5, 7]

>>> 6 in s1

False

>>> 6 not in s1

True

No duplicates

Adding elements

You can sort sets!?
Returns a list

Test element membership too...

Sets: Manipulating

>>> s1 = set([1, 1, 1, 2, 3, 4, 5])

>>> s2 = set([7, 4, 64, 62, 5, 1])

>>> s1 & s2

set([1, 4, 5])

>>> s1 | s2

set([64, 1, 2, 3, 4, 5, 7, 62])

>>> s1 ^ s2

set([64, 2, 3, 7, 62])

>>> s1 - s2

set([2, 3])

>>> s2 - s1

set([64, 62, 7])

 Regular set operations
just work

Strings

● Strip – remove surrounding white space

● >>> ' this is a test '.strip()

● 'this is a test'

● Length – same as lists: len()
● Slicing – same as lists/other sequences
● Formatted – C printf-style inline

● >>> '%d\t%d\t%s\n' % (6, 7, 'hello')

● '6\t7\thello\n'

Strings: Me, Myself, and Irene

● So there are several types of strings...
● Single- or double-quotes accepted
● Triple and you got something special

● Keeps newlines and whitespace generally

>>> 'string'

'string'

>>> "string"

'string'

>>> '''test

... yeah

... '''

'test\n\t\tyeah\n'

Raw Strings

● Maintain escapes inside them

● That is, the '\' stays put

>>> r'This string\t has escapes\n\n.'

'This string\\t has escapes\\n\\n.'

>>> 'This string\t won\'t have escapes\n\n.'

"This string\t won't have escapes\n\n."

Looping: In Theory

● for – always a foreach
● Use enumerate to get more C-stylish with an i

● while – similar to C while
● range, xrange – create ranges to iterate on

● range – actually creates a list in memory
● xrange – does not create a list in memory
● Just use xrange

● break, continue – similar to C

Looping: Applied
Tricky: Modifying lists etc. while looping.
Generally work on copies.

>>> for x in xrange(5):

... print x

...

0

1

2

3

4

>>> while (x > 0):

... print x

... x -= 1

...

4

3

2

1

>>> for i,x in enumerate(['test', '15-441', 'test']):

... print i,x

...

0 test

1 15-441

2 test

Branching
● if → as expected
● elif → else if construct
● else → as expected
>>> if '' or None or 0 or [] or set([]) or ():

... pass

... else:

... print 'huh, they all appear as false.'

...

huh, they all appear as false.

>>> if False:

... pass

... elif True:

... print 'else if!'

...

else if!

Defining Functions

● The magic keyword: def
● Formal parameters – as normal C args

● *arguments – contains non-formal args
● **keywords – contains a dictionary with non-formal keyword

parameters
● Be thinking: varargs from C
● Parameters can have defaults
● Parameters can be named

One Function to Rule Them All

>>> def example(x, y=None, *args, **keywords):

... print x, '\t', y, '\t',

... print args, '\t', keywords

...

>>> example(1, 2, 3, 4, test='test', test2='test2')

1 2 (3, 4) {'test': 'test', 'test2': 'test2'}

The Power of Passing

● Rapidly create a skeleton/think abstractly

● pass – a noop statement – it does nothing

def log_error(message):

 pass

def open_binary(path):

 pass

def close_binary(path):

 pass

def new_client(client_socket):

 pass

while True:

 pass

for x in xrange(10):

 pass

None

● None is kind of like NULL
● That's pretty much it.
● You can use it as a guard value

Classes: The What

● The magic keyword: class

● Another magic keyword: self
● self refers to the current object
● self stores instance variables etc.
● self is always an argument to an instance method

Classes: The How

>>> class myclass(object):

... def __init__(self):

... self.x = 0

... def increment(self):

... self.x += 1

... def get(self):

... return self.x

...

>>> instance = myclass()

>>> instance.get()

0

>>> instance.increment()

>>> instance.get()

1

Iterators and Generators

● The power to create your own xrange
● Classes with next() and __iter__() methods

● Then their instantiated objects may be used as iterator objects

● Functions can use the yield keyword
● State is retained for successive yields

Iterator Example

>>> class myiter:

... def __iter__(self):

... return self

... def next(self):

... raise StopIteration

...

>>> for x in myiter():

... print x

...

Yield Example

>>> def myiter():

... for x in [1, 2, 3, 4, 5]:

... yield x

...

>>> for x in myiter():

... print x

...

1

2

3

4

5

Exceptions: Except and Finally

● try...except

● Often enough for most tasks
● Multiple exceptions in one except
● Or one except per exception type

● try...except...finally

● finally executed on the way out, cleanup handler
● Also on return, break, continue

Exceptions: In Practice

>>> try:

... open('test.txt', 'r')

... except IOError:

... print 'error'

... finally:

... print 'code that is guaranteed to

run'

...

error

code that is guaranteed to run

Exceptions: Making Them...

>>> raise ValueError

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError

raise special classes you have created
with meaningful names.

with: Better IO in Practice

● with keyword uses __enter__ and __exit__
● __exit__ executes no matter what
● Only lives for a block
● Better semantics

● Definitely closing file descriptors etc.
● Replaces standard try/finally blocks
● Uhmmm (Python < 2.5):

● from __future__ import with_statement

with: Better IO in Practice

>>> with open('test.txt', 'r') as f:

... f.read()

...

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IOError: [Errno 2] No such file or directory:

'test.txt'

Writing Tests

● import doctest

● Dynamically finds tests in your documentation!
● Check examples in docstrings

● import unittest

● Test whole programs or APIs or other programs

Writing Documentation

● PEP 257 -- Docstring Conventions
● http://www.python.org/dev/peps/pep-0257/
● Sphinx – Python Documentation Generator
● http://sphinx.pocoo.org/

http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0257/
http://sphinx.pocoo.org/
http://sphinx.pocoo.org/

Pythonic Style

PEP 8 -- Style Guide for Python Code
http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

How do I get LPTHW?

● Free online
http://learnpythonthehardway.org/book/

● Zed Shaw provided PDF
CMU IP-only site
http://www.cs.cmu.edu/~srini/15-441/F11/LPTHW/lpthw.pdf

● How long does it take?
● ~1-2 days for an experienced programmer

http://learnpythonthehardway.org/book/
http://learnpythonthehardway.org/book/
http://www.cs.cmu.edu/~srini/15-441/F11/LPTHW/lpthw.pdf
http://www.cs.cmu.edu/~srini/15-441/F11/LPTHW/lpthw.pdf
http://www.cs.cmu.edu/~srini/15-441/F11/LPTHW/lpthw.pdf
http://www.cs.cmu.edu/~srini/15-441/F11/LPTHW/lpthw.pdf

More Python References

Python Tutorial
http://docs.python.org/tutorial/

Super Useful Python Documentation

http://docs.python.org/library/

Python Interpreter

python

>>> help(x)

http://docs.python.org/tutorial/
http://docs.python.org/tutorial/
http://docs.python.org/library/
http://docs.python.org/library/

GitHub:

Git it, got it, good.

git clone git://github.com/theonewolf/15-441-Recitation-Sessions.git

