

Project 1

Matt Mukerjee
David Naylor

Ben Wasserman

15-441: Computer Networks

Agenda

● Handling Concurrency
● Project 1 Checkpoint 1
● Q & A

Flashback!

● getaddrinfo() - Prepare to launch!
● socket() - Get the file descriptor!
● bind() - Which port am I on?
● listen() - Will someone please call me?
● connect() - Hey, you!
● accept() - Thank you for calling port 8080!
● send() and recv() - Talk to me, please!
● close and shutdown() - Get out!

What do you want to build?
A webserver that can handle multiple concurrent

connections!

What's the problem?
Blocking!

What's the solution?
Threading or select()

Threading approach

● Did in 15-213??
● Main server blocks on accept()
● Accept incoming connection
● Fork() child process for each connection
● Pain!

● Need to manage a pool of threads
● And what if tasks have to communicate?

World of select()

● Event driven programming!
● Single process that multiplexes all requests.
● Caveat

● Programming is not so transparent!
● Server no longer acts like it has only one client!

How to use select()?

● Give select a set of sockets/file descriptors.
● select() blocks till something happens.

● Data coming in on some socket.
● Able to write to a socket.
● Exception at the socket.

● Once woken up, check for the event and
service it the way the server would do.

select()

#include <sys/select.h>

int select (int nfds, fd_set* readfds,
fd_set* writefds, fd_set* exceptfds,

 struct timeval *timeout);

fd_set Datastructure

● Remember, file descriptor is just an integer!
● Datastructure is basically a bit array!
● Helper macros:

FD_ZERO(fd_set* fdset); /* initializes fdset to have 0s for all fds */

FD_SET(int fd, fd_set* fdset); /* sets the bit for fd in fdset */

FD_CLR(int fd, fd_set* fdset); /* clears the bit for fd in fdset */

FD_ISSET(int fd, fd_set* fdset); /* returns 0 if fd is set else non-0 */

 select() Parameters

● The FDs between 0 to nfds-1 are checked.
● Check for reading in readfds.
● Check for writing in writefds.
● Check for exception in exceptfds.
● These fd_sets can be NULL.
● timeout

● NULL – blocking
● else how long to wait for the required condition

before returning to the caller.

Return value, Error states

● Success – number of ready descriptors.
● readfds, writefds and exceptfds are modified

● Time expired – returns 0 (errno set to EINTR)
● Failure – returns -1

● EBADF, EINTR, EINVAL , ENOMEM

Pseudo-code of Usage
● nfds = 0
● Initialize readfds, writefds, exceptfds using FD_ZERO
● Add the listener socket to readfds using FD_SET and update nfds
● For each active connection

● If connection has available read buffer, add fd to readfds (FD_SET)
● If connection has available write buffer, add to writefds (FD_SET)
● Add to exceptfds (FD_SET) – not really needed for this project.
● Update nfds to ensure that the fd falls in the range

● select_return = select(nfds, readfds, writefds, exceptfds, NULL)
● If select_return > 0

● Handle exceptions if any fd in exceptfds is set to 1 (FD_ISSET)
● Read data from connections for which fd in readfds is set to 1

(FD_ISSET)
● Write data from connections for which fd in writefds is set to 1

(FD_ISSET)
● If listener socket is set to read, accept and handle new connection.

● Else handle error states

cp1_checker.py
● ./cp1_checker.py <ip> <port> <#trials> <#writes

and reads per trial> <max # bytes to write at a
time> <#connections>
● Starts #connections connections to server at ip and

port
● Repeat #trials number of times

– Sample #writes and reads per trials connections.
– Send random number of random bytes to each of these

connections (with a limit of max # bytes to write at a
time).

– Receive and check if all the bytes received are same as
the ones that are sent.

● If your server cannot handle multiple connections
– Set #connections to 1 and #writes and reads per trial to 1

Okay, so you can handle multiple connections!
But that is not enough...

Reading data

● Check return value of recv()
● Error – handle the error and clear up state.
● If peer shutdown the connection, clear up state.

● Maintain state
● Maintain a read buffer
● Keep track of the number of bytes left to be read
● May need multiple reads to get all data
● But only one read per socket when select() returns.

Writing data

● Check return value of send()
● Error – handle the error and clear up state.
● If peer shutdown the connection, clear up state.

● Maintain state
● Maintain a write buffer
● Keep track of the number of bytes left to be written
● May need multiple writes to send all data
● Number of bytes actually sent should be checked

from the return value
● Only one write per socket when select() returns.

Exceptfds

● For handling out of band data
● Should be read one byte at a time!
● Not really needed for this project.

Checkpoint 1 Docs
● Makefile - make sure nothing is hard coded specific to your

user; should build a file which runs the echo server (name
it lisod)

● All of your source code - all .c and .h files
● readme.txt - file containing a brief description of your

current implementation of server
● tests.txt - file containing a brief description of your testing

methods for server
● replay.test - a file containing bytes that can be sent to your

server as a test case
● replay.out - a file containing expected bytes that should be

sent as a response from your server when provided
replay.test

● vulnerabilities.txt - identify at least one vulnerability in your
current implementation

Remember

● Code quality
● Code documentation
● Robustness

● Handle all errors
● Buffer overflows
● Connection reset by peer

Peek into the future

● Checkpoint 2
● Implement HTTP 1.1 parser and persistent

connections

● Checkpoint 3
● Implement HTTPS handshaking and persistent

connections via TLS
● Implement CGI server-side.

Any other questions?

Come to our office hours!
Matt Gates 7501 Wednesday 11-Noon

David Gates xxxx Tuesday 4:30 – 5:30 PM
Ben Gates xxxx Thursday 3 – 4 PM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

