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Checkpoint 3

(1) SSL

(2) CGI

(3) Daemonize 



  

Extras

ssl_example.c

ssl_client.py

daemonize.c

(on course website)



  

SSL



  

Getting a...

Domain Name



  

Create a Domain Name

● Get a free domain name from No-IP

● Use your Andrew ID as the hostname



  

Get the Update Client

● You don't have root, so...

● Just build (make), don't install (make install)
● Run manually when your IP changes



  

Create No-IP Conf File

[dnaylor@unix3 ~/noip-2.1.9-1]$ ./noip2 -C -c noip.conf

Auto configuration for Linux client of no-ip.com.

Please enter the login/email string for no-ip.com  <username>

Please enter the password for user '<username>'  ****************

Only one host [dnaylor.no-ip.biz] is registered to this account.

It will be used.

Please enter an update interval:[30]  

Do you wish to run something at successful update?[N] (y/N)

New configuration file 'noip.conf' created.

./noip2 -C -c noip.conf



  

Update Your IP Address

[dnaylor@unix3 ~/noip-2.1.9-1]$ ./noip2 -c noip.conf -i 108.17.82.243

IP address detected on command line.

Running in single use mode.

./noip2 -c noip.conf -i 
108.17.82.243



  

Getting a...

Certificate



  

15-441 Certificate Authority

http://gs11697.sp.cs.cmu.edu/keyserver



  

You Need 3 Things

1) CA certificate

2) Your private key

3) Your certificate



  

Add CA Cert to Your 
System/Browser

e.g., add to OSX Keychain



  

Implementing an...

SSL Server



  

What is SSL?

● Standard behind secure communication 
on the Internet.

● Provides confidentiality & integrity
● Sits between transport & application

SSL

Transport

SSL

Transport



  

OpenSSL Toolkit

● Command line tools, SSL library, and 
crypto library

● Can do a lot more than SSL
● Message digests
● Encryption and decryption of files
● Digital certificates
● Digital signatures
● Random number generation



  

SSL Server In a Nutshell
● Use the OpenSSL library, here is a link to their documentation.

●  Create a second server socket in addition to the first one, use the passed 
in SSL port from the command line arguments.

●  Add this socket to the select() loop just like your normal HTTP server 
socket.

●  Whenever you accept connections, wrap them with the SSL wrapping 
functions.

●   Use the special read() and write() SSL functions to read and write to 
these special connected clients

●    In the select() loop, you need to know if a socket you are dealing with is 
SSL wrapped or not

●    Use appropriate IO depending on the 'type' of socket---although use 
select() for all fd's

●    Use your private key and certificate file that you obtained earlier.

http://www.openssl.org/docs/ssl/ssl.html


  

Open SSL headers 

/* OpenSSL headers */

#include <openssl/ssl.h>

#include <openssl/err.h>



  

Initialization Steps

● Global System Initialize
● SSL_library_init()

● SSL_load_error_strings()

● Initialize SSL_METHOD and SSL_CTX
● meth=SSLv23_method();

● ctx=SSL_CTX_new(meth);

● Loading keys
● SSL_CTX_use_certificate_file(...)

● SSL_CTX_use_PrivateKey_file(...)



  

Global Initialization

● SSL_library_init() 

● registers the available SSL/TLS ciphers and 
digests.

● SSL_load_error_strings()

● Provide readable error messages.



  

SSL_METHOD

● To describe protocol versions 
● SSLv1, SSLv2 and TLSv1

SSL_METHOD* meth = TLSv1_method();



  

SSL_CTX

● Data structure to store keying material
● Reused for all connections; make ONE for 

your server

SSL_CTX* ctx = SSL_CTX_new(meth);



  

SSL_CTX_use_certificate_file()

● Loads the first certificate stored in file 
into ctx. 

● The formatting type of the certificate 
must be specified from the known types
●  SSL_FILETYPE_PEM 
● SSL_FILETYPE_ASN1.
● Our CA generates files of PEM format

int SSL_CTX_use_certificate_file(SSL_CTX *ctx, 

const char *file, int type);



  

SSL_CTX_use_PrivateKey_file()

● Adds the first private key found in file to 
ctx.

● The formatting type of the certificate 
must be specified from the known types:
●  SSL_FILETYPE_PEM
● SSL_FILETYPE_ASN1. 
● Our CA generates files of PEM format

int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const 

char *file, int type);



  

Wrapping Connections

● Create new SSL structure using SSL_new()

● Connect it to the socket using SSL_set_fd()

● Perform handshake using SSL_accept()

● Read and write using SSL_read() and SSL_write()

● Perform shutdown at the end, also need to clear 
state and close underlying I/O socket etc.

● As always, check for return value and handle errors 
appropriately!



  

SSL_new()

● Creates a new SSL structure 
● Create one per connection
● Inherits the settings of the underlying 

context.
SSL* ssl = SSL_new(ctx);



  

SSL_set_fd()

● Tell the SSL object which socket it will 
wrap

int SSL_set_fd(SSL *ssl, int fd);



  

SSL_accept

● SSL_accept - wait for a TLS/SSL client to 
initiate a TLS/SSL handshake

int SSL_accept(SSL *ssl)

● (Do this after a standard accept().)



  

SSL_read and SSL_write

● SSL_read to read bytes from a TLS/SSL connection 
     int SSL_read(SSL *ssl, void *buf, int num);

● SSL_write to write bytes to a TLS/SSL connection
    int SSL_write(SSL *ssl, const void *buf, int num);

● NOTE:
● The data are received in records (with a maximum 

record size of 16kB for SSLv3/TLSv1). 
● Only when a record has been completely received, it 

can be processed (decryption and integrity check)



  

SSL_shutdown

● Shuts down an active TLS/SSL connection. 

 int SSL_shutdown(SSL *ssl);

● (Then do a standard close().)



  

SSL
Questions?



  

Daemonizing



  

Orphaning

● Fork the process to create a copy (child)
● Let parent exit!
● The child will become child of init process 

● Start operating in the background

int pid = fork();

if (pid < 0) exit(EXIT_FAILURE); /* fork error */

if (pid > 0) exit(EXIT_SUCCESS); /* parent exits */

/* child (daemon) continues */



  

Process Independence

● Process inherits parent's controlling tty; 
need to detach

● Server should not receive signals from the 
process that started it 

● Operate independently from other 
processes

setsid() /*obtain a new process group*/



  

Close File Descriptors

● Close all open descriptors inherited
   int i;

   for (i = getdtablesize(); i >= 0; --i)

      close(i);

● Connect standard I/O descriptors (stdin 0, 
stdout 1, stderr 2) to /dev/null
i = open(“/dev/null”,O_RDWR);  /* open stdin */

dup(i) /* stdout */

dup(i) /* stderr */



  

File Creation Mask

● Servers run as super-user
● Need to protect the files they create
● File creation mode is 750 (complement of 

027)

umask(027);



  

Running Directory

● Server should run in a known directory

chdir(“/servers/”);



  

Mutual Exclusion

● We want only one copy of the server (file locking)

● Record pid of the running instance!

● 'cat lisod.lock' more efficient than 'ps -ef | grep lisod'
  

     lfp = open(lock_file, O_RDWR|O_CREAT, 0640);

     if (lfp < 0)

        exit(EXIT_FAILURE); /* cannot open */

     if (lockf(lfp, F_TLOCK, 0) < 0)

        exit(EXIT_SUCCESS); /* cannot lock */

     sprintf(str, "%d\n", getpid());

     write(lfp, str, strlen(str)); /*record pid to lockfile */



  

Logging

● You sent stdout and stderr to /dev/null, so 
you need to log to a file!



  

Daemonizing
Questions?
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