

 Angels (Open SSL)

and D(a)emons
Serhat Kiyak

Harshad Shirwadkar
15-441: Computer Networks

Checkpoint 3

(1) SSL

(2) CGI

(3) Daemonize

Extras

ssl_example.c

ssl_client.py

daemonize.c

(on course website)

SSL

Getting a...

Domain Name

Create a Domain Name

● Get a free domain name from No-IP

● Use your Andrew ID as the hostname

Get the Update Client

● You don't have root, so...

● Just build (make), don't install (make install)
● Run manually when your IP changes

Create No-IP Conf File

[dnaylor@unix3 ~/noip-2.1.9-1]$./noip2 -C -c noip.conf

Auto configuration for Linux client of no-ip.com.

Please enter the login/email string for no-ip.com <username>

Please enter the password for user '<username>' ****************

Only one host [dnaylor.no-ip.biz] is registered to this account.

It will be used.

Please enter an update interval:[30]

Do you wish to run something at successful update?[N] (y/N)

New configuration file 'noip.conf' created.

./noip2 -C -c noip.conf

Update Your IP Address

[dnaylor@unix3 ~/noip-2.1.9-1]$./noip2 -c noip.conf -i 108.17.82.243

IP address detected on command line.

Running in single use mode.

./noip2 -c noip.conf -i
108.17.82.243

Getting a...

Certificate

15-441 Certificate Authority

http://gs11697.sp.cs.cmu.edu/keyserver

You Need 3 Things

1) CA certificate

2) Your private key

3) Your certificate

Add CA Cert to Your
System/Browser

e.g., add to OSX Keychain

Implementing an...

SSL Server

What is SSL?

● Standard behind secure communication
on the Internet.

● Provides confidentiality & integrity
● Sits between transport & application

SSL

Transport

SSL

Transport

OpenSSL Toolkit

● Command line tools, SSL library, and
crypto library

● Can do a lot more than SSL
● Message digests
● Encryption and decryption of files
● Digital certificates
● Digital signatures
● Random number generation

SSL Server In a Nutshell
● Use the OpenSSL library, here is a link to their documentation.

● Create a second server socket in addition to the first one, use the passed
in SSL port from the command line arguments.

● Add this socket to the select() loop just like your normal HTTP server
socket.

● Whenever you accept connections, wrap them with the SSL wrapping
functions.

● Use the special read() and write() SSL functions to read and write to
these special connected clients

● In the select() loop, you need to know if a socket you are dealing with is
SSL wrapped or not

● Use appropriate IO depending on the 'type' of socket---although use
select() for all fd's

● Use your private key and certificate file that you obtained earlier.

http://www.openssl.org/docs/ssl/ssl.html

Open SSL headers

/* OpenSSL headers */

#include <openssl/ssl.h>

#include <openssl/err.h>

Initialization Steps

● Global System Initialize
● SSL_library_init()

● SSL_load_error_strings()

● Initialize SSL_METHOD and SSL_CTX
● meth=SSLv23_method();

● ctx=SSL_CTX_new(meth);

● Loading keys
● SSL_CTX_use_certificate_file(...)

● SSL_CTX_use_PrivateKey_file(...)

Global Initialization

● SSL_library_init()

● registers the available SSL/TLS ciphers and
digests.

● SSL_load_error_strings()

● Provide readable error messages.

SSL_METHOD

● To describe protocol versions
● SSLv1, SSLv2 and TLSv1

SSL_METHOD* meth = TLSv1_method();

SSL_CTX

● Data structure to store keying material
● Reused for all connections; make ONE for

your server

SSL_CTX* ctx = SSL_CTX_new(meth);

SSL_CTX_use_certificate_file()

● Loads the first certificate stored in file
into ctx.

● The formatting type of the certificate
must be specified from the known types
● SSL_FILETYPE_PEM
● SSL_FILETYPE_ASN1.
● Our CA generates files of PEM format

int SSL_CTX_use_certificate_file(SSL_CTX *ctx,

const char *file, int type);

SSL_CTX_use_PrivateKey_file()

● Adds the first private key found in file to
ctx.

● The formatting type of the certificate
must be specified from the known types:
● SSL_FILETYPE_PEM
● SSL_FILETYPE_ASN1.
● Our CA generates files of PEM format

int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const

char *file, int type);

Wrapping Connections

● Create new SSL structure using SSL_new()

● Connect it to the socket using SSL_set_fd()

● Perform handshake using SSL_accept()

● Read and write using SSL_read() and SSL_write()

● Perform shutdown at the end, also need to clear
state and close underlying I/O socket etc.

● As always, check for return value and handle errors
appropriately!

SSL_new()

● Creates a new SSL structure
● Create one per connection
● Inherits the settings of the underlying

context.
SSL* ssl = SSL_new(ctx);

SSL_set_fd()

● Tell the SSL object which socket it will
wrap

int SSL_set_fd(SSL *ssl, int fd);

SSL_accept

● SSL_accept - wait for a TLS/SSL client to
initiate a TLS/SSL handshake

int SSL_accept(SSL *ssl)

● (Do this after a standard accept().)

SSL_read and SSL_write

● SSL_read to read bytes from a TLS/SSL connection
 int SSL_read(SSL *ssl, void *buf, int num);

● SSL_write to write bytes to a TLS/SSL connection
 int SSL_write(SSL *ssl, const void *buf, int num);

● NOTE:
● The data are received in records (with a maximum

record size of 16kB for SSLv3/TLSv1).
● Only when a record has been completely received, it

can be processed (decryption and integrity check)

SSL_shutdown

● Shuts down an active TLS/SSL connection.

 int SSL_shutdown(SSL *ssl);

● (Then do a standard close().)

SSL
Questions?

Daemonizing

Orphaning

● Fork the process to create a copy (child)
● Let parent exit!
● The child will become child of init process

● Start operating in the background

int pid = fork();

if (pid < 0) exit(EXIT_FAILURE); /* fork error */

if (pid > 0) exit(EXIT_SUCCESS); /* parent exits */

/* child (daemon) continues */

Process Independence

● Process inherits parent's controlling tty;
need to detach

● Server should not receive signals from the
process that started it

● Operate independently from other
processes

setsid() /*obtain a new process group*/

Close File Descriptors

● Close all open descriptors inherited
 int i;

 for (i = getdtablesize(); i >= 0; --i)

 close(i);

● Connect standard I/O descriptors (stdin 0,
stdout 1, stderr 2) to /dev/null
i = open(“/dev/null”,O_RDWR); /* open stdin */

dup(i) /* stdout */

dup(i) /* stderr */

File Creation Mask

● Servers run as super-user
● Need to protect the files they create
● File creation mode is 750 (complement of

027)

umask(027);

Running Directory

● Server should run in a known directory

chdir(“/servers/”);

Mutual Exclusion

● We want only one copy of the server (file locking)

● Record pid of the running instance!

● 'cat lisod.lock' more efficient than 'ps -ef | grep lisod'

 lfp = open(lock_file, O_RDWR|O_CREAT, 0640);

 if (lfp < 0)

 exit(EXIT_FAILURE); /* cannot open */

 if (lockf(lfp, F_TLOCK, 0) < 0)

 exit(EXIT_SUCCESS); /* cannot lock */

 sprintf(str, "%d\n", getpid());

 write(lfp, str, strlen(str)); /*record pid to lockfile */

Logging

● You sent stdout and stderr to /dev/null, so
you need to log to a file!

Daemonizing
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

