XIA: eXpressive Internet Architecture - A Proposal for a Future Internet Architecture

15-441/641: Computer Networking

Lecture 28: What is Next?

Peter Steenkiste

Fall 2016 www.cs.cmu.edu/~prs/15-441-F16

Outline

- Background
- The expressive Internet Architecture a proposal
- Research examples: AIP and APIP
- User privacy survey

NOTE: this lecture describes a research project. The goal is to have you think outside of the box.

2

Key Internet Features

What we learned about the current Internet:

- Simple core with smart endpoints
- The IP narrow waist supports evolution
- Packet based communication
- All IP hosts can exchange packets
- Non-essential functions are services
- End-to-end transport protocols
- Security is not part of the architecture

But maybe there are better ways?

Outline

- Background
- The eXpressive Internet Architecture a proposal
 - Not on final
- Research examples: AIP and APIP

"Narrow Waist" of the Internet Key to its Success

- Has allowed Internet to evolve dramatically
- But now an obstacle to addressing challenges:
 - No built-in security
 - New usage models a challenge content and services, not hosts
 - Hard to leverage advances in technology in network
 - Limited interactions between network edge and core
 - But where do we get started?

Three Simple Ideas

- Support multiple types of destinations
 - Not only hosts, but also content, services, etc.
 - Not having to force communication at a lower level (e.g., hosts) reduces complexity and overhead
- Intrinsic security guarantees security properties as a direct result of the design of the system
 - Do not rely on external configurations, data bases, ..
- Flexible addressing gives network more options for successfully completing communication operations
 - Include both "intent" and "fallback" address
 - Supports evolvability, network diversity, fault recovery, mobility, ...

Multiple Principal Types

- Identifying the intended communicating entities reduces complexity and overhead
 - Have different forwarding semantics
- Set should be evolvable

Applications

Internet Protocol

Link

Technologies

Using Principal Types

- Content and service addresses directly supports cross-application service selection and caching
 - Complex today: DNS indirection infrastructure, deep packet inspection, transparent proxies, etc.
- Routing protocols for hosts, content and services
 - Metrics driving by context, different concerns
 - Public internet: policies, business, ...
 - Intra-networks: usage models, super fast recovery, ...
- Add new (custom) functionality to the network
 - E.g., caching + service -> diverse multicast variants
 - Dealing with disruptions

9

11

Security as Intrinsic as Possible

- Communication security properties are a direct result of the design of the system
 - Do not rely on correctness of external configurations, actions, data bases

Use of Intrinsic Security

- Name-> address look automatically provides public key associated with the address
 - May not need for separate key management infrastructure
 - Can help, e.g., with network partitioning
- Changing of addresses in session in network layer
 - Sign change with private key associated with old address
- New types of intrinsic security that might
 - Variants for services, contents and hosts; new types
 - Support for existing key management processes
- Simplify comprehensive security mechanisms

Supporting Evolvability: Flexible Addressing

- Introduction of a new principal type will be incremental no "flag day"!
 - Not all routers and ISPs will provide support from day one
- Creates chicken and egg problem what comes first: network support or use in applications
- Solution: provide an intent and fallback address
 - Intent address allows innetwork optimizations based on user intent
 - Fallback address is guaranteed to be reachable

Flexible Addressing

- Addresses are represented as Directed Acyclic Graphs of typed identifiers
 - Fallbacks are different, ordered edges

- Scoping is a sequence of edges

 Used to deal with mobility, incremental deployment, ...

13

Ongoing Networking Research

- Transport protocols: congestion control, error recovery
- Intrinsic security and mobility, ...
- Incremental deployment of network architectures (features)
- Verification of third party services using TPMs
- Very fast lookup of flat IDs in huge tables
- Optimize use of network features under user control
- · Native Unix XIA implementation extreme evolvability
- · Design of a network control plane
- Supporting DTNs, pub-sub systems, group communication, ...
- · Routing and forwarding for services, content
- Network diagnostics, centralized versus distributed control
- Video streaming as a use case for XIA
- Economic incentives and implications of cryptographic identifiers
- · Balancing user accountability and privacy

Outline

- Background
- The expressive Internet Architecture a proposal
- Research examples: AIP and APIP
 - Accountability AND privacy

17

Examples of XIA-related Research

- The Accountable Internet Protocol
 - Accountable Internet Protocol (AIP). David Andersen, et al, ACM SIGCOMM 2008
 - Example of a protocol that provides accountability for hostbased communication
- The Accountable and Private Internet Protocol
 - Balancing Accountability and Privacy (APIP). David Naylor, et al, ACM SIGCOMM 2014
 - Expands on AIP to support user privacy

18

AIP Motivation

- Many security challenges are a result of not being able to unambiguously determine who is responsible for a specific action
 - Source spoofing, DOS attacks, untraceable spam, ...
- Add accountability to the Internet architecture
- Key idea is to use "self-certifying" addresses for both hosts and domains
- Avoid dependence on external configurations
 - E.g. global trust authority

19

Addressing and Routing

- · Addresses are hierarchical, similar to today's Internet
 - But each level has a flat address, i.e. no CIDR
- Until packet reaches destination AD, intermediate routers use only destination AD to forward packet
 - Effectively uses a pointer in a stack of domain identifiers
- · Upon reaching destination AD, forward based on EID

Self-Certifying Identifiers

- Identifier of object is public key of object
 - Convenient to use hash of object (e.g. fixed size)
 - Need way of securely mapping user readable name into the identifier
- AD is hash of public key of domain
- EID is hash of public key of host
- Provides a means of verifying the correctness of the "source" identifiers in a packet
 - Effectively by sending a challenge to the source that it must sign with its private key

21

Verification Packet

- Router sends a challenge V to Source containing:
 - · Source and destination identifier
 - Hash of the packet P
 - Interface of the router
 - A secret signed by R
- Source signs V with its private key and sends it back to R
 - But only if it recognizes the hash
- R verifies that it was signed correctly using the public key from the source field
- If they match, R add S to its cache

23

Receive packet source AD:X Forward packet Drop packet Send V to source Pass uRPF?

AIP Discussion

- AIP adds complexity to routers ...
 - Crypto support, caches, larger forwarding tables, ..
- ... but accountability helps address number of security challenges
 - Reduces complexity and cost in rest of networks
- Research question
 - Fast look up in large tables of flat identifiers
 - Managing keys (revocation, minting, ...)
 - Evolving of the crypto

Growing User Concern about Privacy

- Fueled by personal experience and reports, e.g., social networks, vendors, Snowden, ...
 - More privacy is always better?
- Privacy can be expensive
 - Obvious example: strong anonymity using TOR
 - More subtle costs associated with HTTPS
 - "The Cost of "S" in HTTPS", Naylor et. al., ACM CoNext, Dec 2014
 - Lack of accountability
- AIP provides accountability price is loss of privacy
 - TOR is the other way around!

. 7

Source Addresses, or Balancing Privacy and Accountability • Source address are assumed to be essential but you can build a network without them What are source addresses used for? Used by: Hard to balance Return address Privacy and Identify sender Destination Accountability: Accountability Network Tor versus AIP Error reporting Flow ID "Tussle" controlled by on/off switch

Accountability and Privacy

- View source addresses as accountability addresses
 - Uses AIP style accountability, but ...
 - Accountability can be delegated to a "service" that takes responsibility for packet
 - Return address can be (hidden) inside packet
- Many "details": nature of delegate, fate sharing, ...

29

Final Announcements

- P3 due on last day of classes
- HW4 due today
- Final on Dec 18, 5:30-8:30
 - Closed book
 - Full semester, with emphasis on second half
 - Special office hours next week (see web)
- Liked the course and the projects?
 - Maybe you want to TA next fall
 - Or maybe you want to get involved in research
 - Or take Wireless Networking: 18-452/755 in S17

30

XIA Project

- More information:
 - http://www.cs.cmu.edu/~xia
- XIA faculty
 - Peter Steenkiste, CS/ECE, Carnegie Mellon
 - Dave Andersen, David Eckhardt, Srini Seshan, Hui Zhang, CS, Carnegie Mellon
 - Sara Kiesler, HCII, Carnegie Mellon
 - Jon Peha, Marvin Sirbu, EPP, Carnegie Mellon
 - Adrian Pérrig, ETH/Carnegié Mellon
 - Aditya Akella, CS, University of Wisconsin
 - John Byers, CS, Boston University
 - Bruce Maggs, CS, Duke

Outline

- Background
- The eXpressive Internet Architecture a proposal
 - Example and concepts
 - Research thrusts
- Research examples: AIP and APIP
 - Accountability AND privacy
- User privacy survey

Addressing Requirements

- Fallback: intent that may not be globally understood must include a backwards compatible address
 - Incremental introduction of new XID types
- Scoping: support reachability for non-globally routable XID types or XIDs
 - Needed for scalability
 - Generalize scoping based on network identifiers
 - But we do not want to give up leveraging intent
- Iterative refinement: give each XID in the hierarchy option of using intent

33

Our Solution: DAG-Based Addressing

- Uses direct acyclic graph (DAG)
 - Nodes: typed IDs (XID; expressive identifier)
 - Outgoing edges: possible routing choices
- Simple example: Sending a packet to HIDs

Dummy source: special node indicating packet sender

final destination of packet with no outgoing edges

Support for Fallbacks with DAG

A node can have multiple outgoing edges

- Outgoing edges have priority among them
 - Forwarding to HID_S is attempted if forwarding to CID_Δ is not possible Realization of fallbacks

DAGs Support Scoping and Iterative Refinement Server-side domain hierarchy (CID_S) "XIA: Efficient Support for Evolvable Internetworking", NSDI 2012