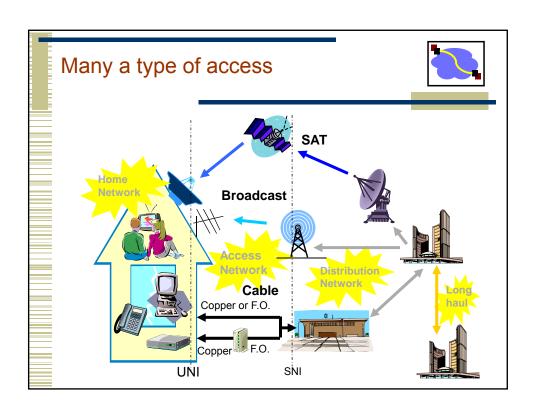
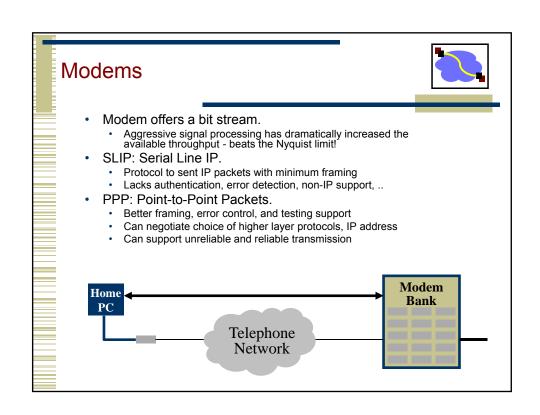
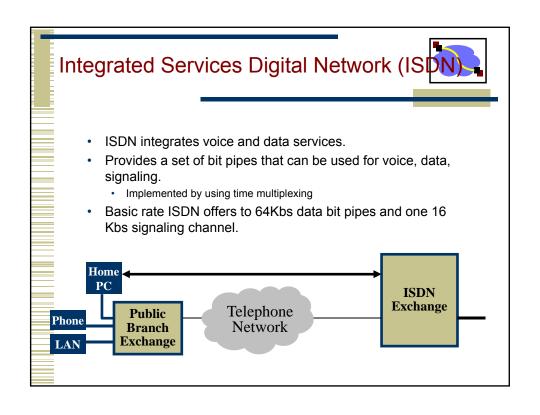
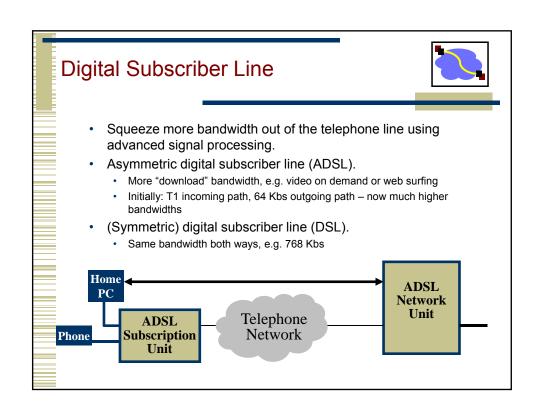


Lecture 25: Last Mile Technologies
Peter Steenkiste

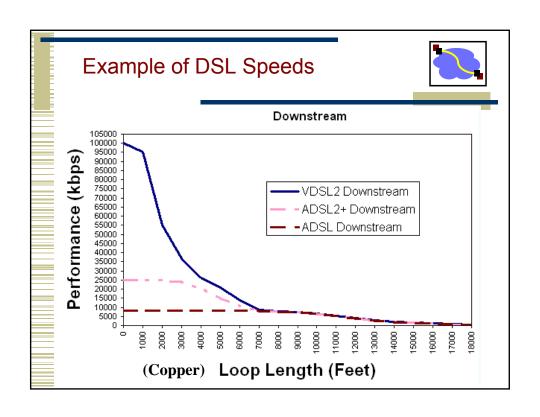

Fall 2015 www.cs.cmu.edu/~prs/15-441-F15

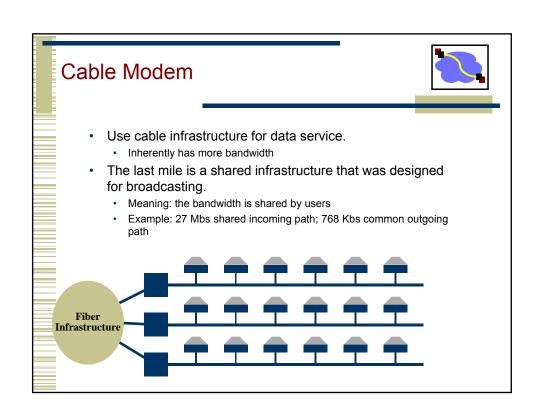

Outline




- Classic view: different types of wires
 - Copper: telephone, modem, xDSL
 - · Cable: TV driven
 - · Fiber: future proofing
 - (Wireless: satellite and terrestrial)
- Media encoding and streaming
- Triple play: IPTV, cable, fiber to the home

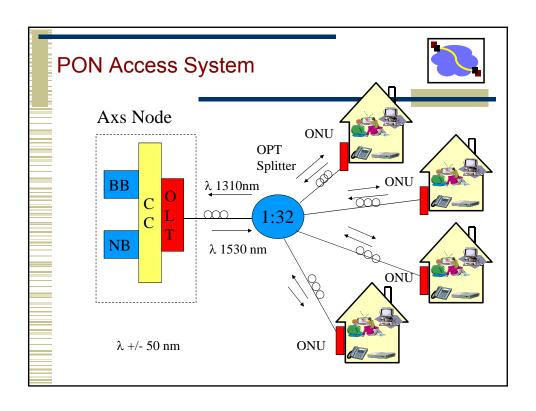
.




DSL: Physical Layer Matters

- Telephone wiring was design to carry a telephone signal
 - Carry analog voice signal in 0 4 KHz
 - 1-pair of voice-grade unshielded twisted pair (UTP)
 - Ends of wiring were conditioned for optimizing low frequencies – cuts off higher frequencies
- Changes needed for higher frequencies
 - Change conditioning at the end points
 - · Better coding and modulations
 - · Bandwidth depends on the distance
 - · Can upgrade to better wiring, e.g., 2-pair DG UTP
 - · Data uses higher frequencies on the wire

ADSL2+ G.992.5	Video/ voice/ data/copper	16 – 25 Mb/s Down Up to 800 Kb up Higher-optional	video capabilities. Dist 1.5 km/BW
ADSL2 With and without splitter – G.992.3 / 4	Video/ voice/ data/copper	8 Mb/s down 800 Kb/s up Higher-optional	video capab. Dist + 200m ADSL
ADSL With and without splitter – G.992.1 / 2	Voice/data /copper	Up to 8 Mb/s down Up to 1.5 Mb/s up	Full use existing copper. Web brows/Voice 2.7- 5.4 km
VDSL Symmetric Asymmetric G.993.1	Video/ voice/ data (V/V/D) over copper	Up to 52 Mb/s down asymm Up to 26 Mb/s Symm.	Broadcast video, VoD, internet TV, 1.5 km - 300m
SHDSL Symmetric G.991.2	Voice/data/ Video 1/2 pairs	192 K to 4.6 M Steps 8/16 Kb/s Poss amplif.	V/V/D Services mainly for business appl.
HDSL Symmetric G.991.1	Voice data and video 1/2/3 pairs	784 Kbit/s to 2320 Kbit/s	V/V/D Services mainly for business appl.


Fiber – "FTTX"

- Traditionally, fiber only used in network "core"
 - More expensive technology higher capacity
- Reach of fiber has expanded over time, i.e., fiber reaches closer to the consumer
 - Fiber to the cabinet
 - · Fiber to the curb
 - · Fiber to the home
 - Options include "active" and "passive"
- Trend applies to all copper technologies
 - · Cable, twisted pair

11

Cable Versus Fiber Cable Modem Network Simplex 6 MHz downstream channels Simplex 200 KHz to 6+ MHz upstream channels All traffic traverses the Headend Headend AMP AMP AMP Copper

Comparison

- Modems use "worst case" technology.
 - Has to fit within any voice channel so encoding suboptimal
 - Wires can be very long (end-to-end)
- ISDN can be more aggressive dated quickly
- DSL is highly optimized for the transmission medium
 - · But there are some constraints on distance
- Cable modem uses a transmission medium that has inherently a higher bandwidth, but the network architecture will limit throughput.
 - Designed for broadcasting, not for point-point connections
- Fiber has high capacity but is a big investment

Outline

- Classic view: different types of wires
- Media encoding and streaming
 - Big Picture
 - Voice and video compression
 - Protocols: SIP and RTP
- Triple play: IPTV, cable, fiber to the home

15

Different Classes of Streaming

- Multimedia streaming covers audio and video
- · Playback: you play back stored content
 - · Full content is available up front
 - · Flexibility in when content is transmitted
- Broadcast: transmission of live content
 - Content generated on the fly but flexibility in playback delay seconds in practice
 - VCR/DVR functionality adds a twist
- Interactive: voice and video conferencing
 - · Latency is very critical
 - Impacts entire system: encoding, protocols, end-system design, ...

Steps in Encoding and Decoding

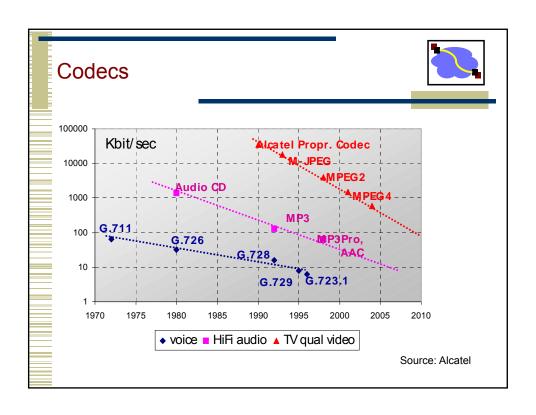
- · Process has three steps on each side
- · Digitize: represent information in bits
 - Sample, quantize, (eg. PCM)
- Compress: reduce number of bits
 - Audio: GSM, G.729, G.723.3, MP3, ...
 - Video: MPEG 1/2/4, H.261, ...
- Send over the network
- Reverse process on receive side: uncompress, convert, play – need to match!

Audio Encoding

- Traditional telephone quality encoding: 8KHz samples of 8 bits each – 64 Kbps
- CD quality encoding: 44.1 KHz of 16 bits
 - 1.41 Mbs uncompressed
- · MP3 compression similar to MPEG
 - Frequency ranges that are divided in blocks

	Range	Ratio
Layer 1	384 kbps	4
Layer 2	192 kbps	8
Layer 3	128 kbps	12

Video Encoding



- · Captured frames ("raw" video) are very large:
 - 320 x 240 x 24-bit color = 230,400 bytes/frame
 - 15 frames/second = 3,456,000 bytes/second
 - 10 seconds takes around 30 Mbytes! (no audio)
- · Commonly-used encoding "tricks":
 - · Per-frame versus inter-frame encoding
 - · Leverage fact that successive frames tend to be similar
 - Example: MPEG uses I, P, and B frames (video lecture)
 - · Impacts latency
 - Layered encoding
 - · Quality improves as you decode more layers

Representative Video Bit Rates (Hi ↓ Lo Quality)

- 1.2 Gbps Uncompressed HDTV
- 19.4 Mbps ATSC (≈ HDTV quality)
- 8 9 Mbps MPEG4 (≈ HDTV quality)
- 90 Mbps Uncompressed NTSC (SDTV)
- 3 6 Mbps MPEG2 (≈ SDTV quality)
- 1.5 Mbps MPEG4 (≈ SDTV quality)
- 1.5 Mbps MPEG1 (≈ VHS < SDTV quality)
- Note: ATSC, MPEG2, & MPEG4 support a wide variety of formats (SDTV ↔ HDTV)

- Classic view: different types of wires
- Media encoding and streaming
 - Big Picture
 - Voice and video compression
 - Protocols: SIP and RTP
- Triple play: IPTV, cable, fiber to the home

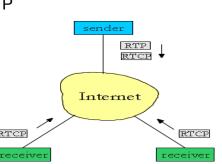
Transport Protocol Properties

- · Reliability.
 - Some lost data may be acceptable depends on encoding and user expectations
 - Timeouts typically result in unacceptable delay there may not be enough time to retransmit data
- Congestion control.
 - Nature of the flow fundamentally limits its bandwidth
 - Reduction of rate in response to congestion should reduce data size, not transmit rate for samples
 - E.g. change frame rate or frame size
- Flow control: natural pacing.
 - Samples should be paced at the rate of the data
 - Too slow --> underflow and missed deadlines
 - Too fast --> buffer overflow and lost data

Real Time Transport Protocol (RTP)

- Multimedia senders append header fields before passing to transport layer
 - Format, sequence numbers, timestamps, ...
- RTP logically extends UDP: application layer between UDP and application
- RTP does not guarantee timely data delivery.
 - Simply helps applications with formatting and the collection of session information
 - Guarantees can only be provided at lower level
- The protocol has two parts: Real-time Transport Protocol (carry data) and Real-Time Control protocol (monitor quality, participant info, ..)

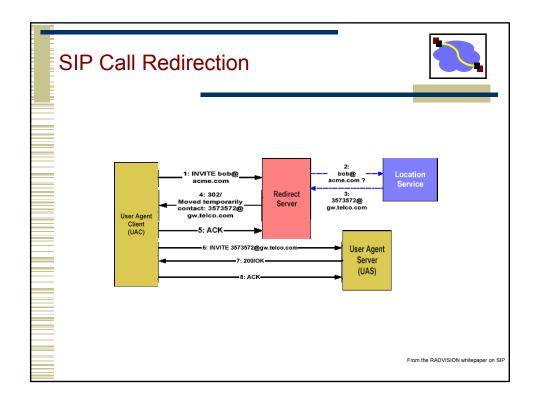
RTP Packet Format


- Source/Payload type
 - · Different formats assigned different codes
 - Eg. GSM -> 3, MPEG Audio -> 14
- Sequence numbers
- Time stamps
- Synchronization source ID
- · Miscellaneous fields, e.g., feedback

Real Time Control Protocol (RTCP)

- RTCP packets transmitted by each participant in RTP session to all others using multicast
- Distinct port number from RTP
- Reports on:
 - · Loss rate
 - · Inter-arrival jitter
 - · Identity of receivers
 - · Delay, (indirectly)
- Control bandwidth sharing
 - Needed for scalability
 - · E.g., 5% of data bandwidth

SIP Introduction


- SIP is an application level signaling protocol for initiating, managing and terminating sessions in the Internet
 - Registrations, invitations, acceptations, and disconnections
 - Sessions may include text, voice, video
 - Can use unicast or multicast communication
 - Client-server model: request-reply transaction
- · Common headers in plain text, similar to MIME/HTTP
 - request/response line (e.g., INVITE a@b.com SIP/2.0)
 - message headers (identification, routing, etc)
 - message body, e.g., session description protocol

SIP Entities

- User agent (UA)
 - UA client (UAC) and UA server (UAS)
- Proxy server
 - · relay calls; chaining; forking
- Redirect server
 - redirect calls
- Registrar server
 - UA registration (UA whereabouts)

SIP Session Establishment and **Call Termination** • REGISTER: register user agents INVITE: initiate calls ACK: confirm responses BYE: terminate or transfer User Agent calls Client (UAC) Server (UAS) Other methods: · CANCEL, OPTIONS, INFO, COMET, PRACK, SUBSCRIBE, NOTIFY, **REFER** SIP response: HTTP-like (e.g., SIP/2.0 200 OK)

Outline

- Classic view: different types of wires
- · Media encoding and streaming
- Triple play: IPTV, cable, fiber to the home
 - Multicast, traffic management
 - · Trends for cable, fiber

31

Change in User Demand: Triple Play

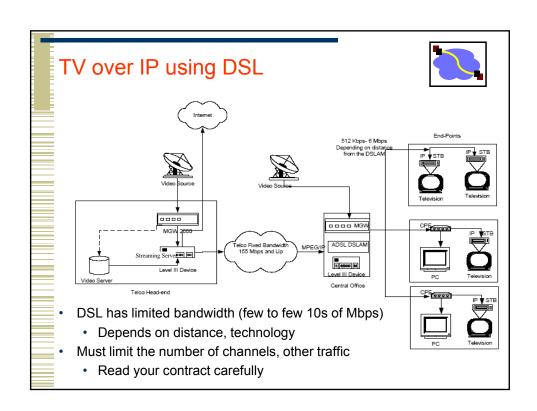
- Cable companies already offer TV and data service natural add phone service
 - Very low bandwidth
 - Plays well in market convenient and cost effective
 - · Services emerged as a fourth component
- What about telephone companies
 - · How do you deliver TV service over a phone wire?
 - Necessary to be competitive
- How about incumbents?
 - · They start with zero wires

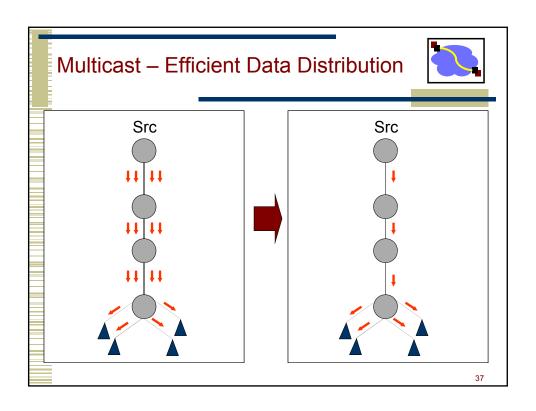
Delivering "Triple Play" to Consumers

- Can be viewed at the 1990's dream of integrated services networks: voice, video, and data
- IPTV delivery over DSL optimized to work around last mile bottleneck
 - · Rest of the lecture
- Cable and fiber have plenty of bandwidth channels can be dedicated to specific uses
 - Take "TV" channels and use for Internet service and voice
 - Demand for large numbers of channels is starting to stress even cable capacity: deliver less unpopular channels "on demand", DSL style (switched video)

33

IPTV - Internet Protocol television



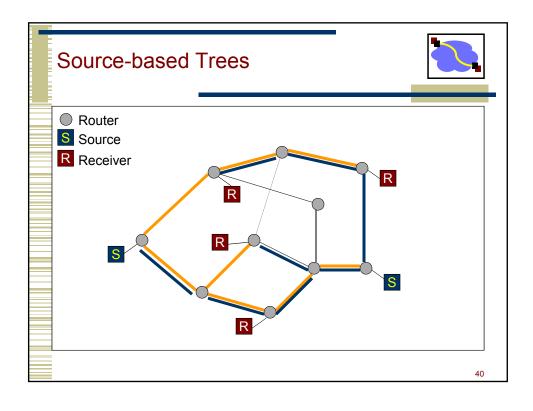

- Deliver TV broadcast to users using Internet topology
 - · Also, services, data, and voice, i.e. triple play
- Design only delivers channels of interest to the home
 - Contrast with broadcast nature of cable design
 - · Reduce load on the last mile link
- Uses IP multicast and RTP for distribution of broadcast TV
 - More on this later
 - Other traffic is unicast, using different higher level protocols

IPTV Components

- · Streaming server: encoding of live content
 - Also, encryption (DRM), protocol support, e.g., for DVR, PIP, ...
- IP network with multcast support
- DSLAM Digital Subscriber Line Access Multiplexer
 - Mux/demux from/to multiple subscribers
- CPE Customer Premises Equipment
 - Receives IP streams from DSLAM and distributes them throughout the home
- STB Set Top Box
 - Decryption, decoding, D/A, channel control, ...

IP Multicast Service Model (rfc1112)

- Each group identified by a single IP address
- Groups may be of any size
- Members of groups may be located anywhere in the Internet
- Members of groups can join and leave at will
- · Senders need not be members
- Group membership not known explicitly
- Analogy:
 - Each multicast address is like a radio frequency, on which anyone can transmit, and to which anyone can tune-in.
- For IPTV membership is known and access is controlled end-to-end

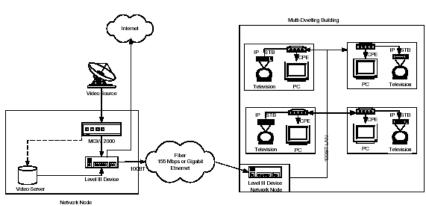

IP Multicast Addresses

- · Class D IP addresses
 - 224.0.0.0 239.255.255.255

1 1 1 0 Group ID

- How to allocated these addresses?
 - · Well-known multicast addresses, assigned by IANA
 - Transient multicast addresses, assigned and reclaimed dynamically
 - · Addresses can be centrally assigned in IPTV networks

IP Multicast Service


- Sending source sends one packet
- Receiving two new operations
 - Join-IP-Multicast-Group(group-address, interface)
 - Leave-IP-Multicast-Group(group-address, interface)
 - Receive multicast packets for joined groups via normal IP-Receive operation
- Making it work:
 - · Routers must replicate packets: list of egress ports
 - Receivers must be able to join a group Internet Group Management Protocol (IGMP)
 - Routing protocol "connects" receiver to the "tree"

41

TV over IP using FTTH

- Pushing fiber to the home dramatically increases bandwidth, e.g., channels
 - · Easy to justify for, e.g., apartment buildings

Controlling Quality of Service

- · IPTV and voice have very high QoS requirements
 - Need to compete with traditional telephone and cable TV delivery based on circuits
 - · Bandwidth requirements are known
- Data and interactive TV services have traditional web-like requirements
 - · Optimize response time, e.g., browsing
 - · Maintain bandwidth, e.g., Netflix
 - · Bursty bandwidth requirements
- QoS control is based on careful bandwidth allocation and enforcing bandwidth limits using traffic shapers

43

Credit

- Lecture includes slides from several sources:
 - home.ubalt.edu/abento/427/VOIPLASTMILE/VOIPLASTMILE.PPT
 - http://www.item.ntnu.no/fag/ttm7/Lectures/5 Convergence IP TV. ppt
 - www.okstate.edu/elecengr/scheets/ecen5553/fall12/TCM2930W.PPT