

Lecture 25: Wireless Eric Anderson

Fall 2015 www.cs.cmu.edu/~prs/15-441-F15

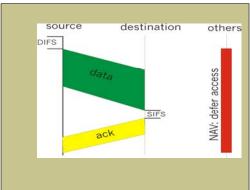
Overview

- Internet mobility
- TCP over noisy links
- · Link layer challenges and WiFi
- Cellular

.

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 CSMA: sender

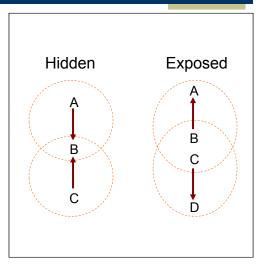

 If sense channel idle for DIFS (Distributed Inter Frame Space)

then transmit entire frame (no collision detection)

- If sense channel busy then binary backoff

802.11 CSMA receiver:

- If received OK return ACK after SIFS (Short IFS)
- ACK is needed due to lack of collision detection
- SIFS < DIFS: priority

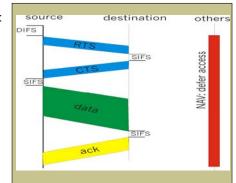


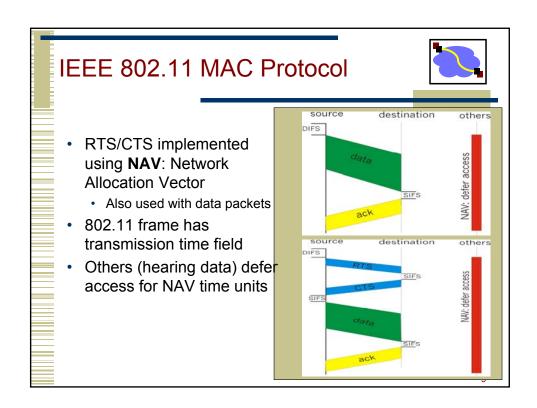
3

But CSMA Does Not (Always) Work

- Carrier Sense problems
- Relevant contention at the receiver, not sender
 - Hidden terminal
 - Exposed terminal

Collision Avoidance Mechanisms


- Problem:
 - Two nodes, hidden from each other, transmit complete frames to base station
 - · Wasted bandwidth for long duration!
- Solution:
 - · Small reservation packets
 - Nodes track reservation interval with internal "network allocation vector" (NAV)


6

Collision Avoidance: RTS-CTS Exchange

- Explicit channel reservation
 - Sender: send short RTS: request to send
 - Receiver: reply with short CTS: clear to send
 - CTS reserves channel for sender, notifying (possibly hidden) stations
- RTS and CTS short:
 - collisions less likely, of shorter duration
 - end result similar to collision detection
- Avoid hidden station collisions
- Not widely used
 - Overhead is too high
 - Not a serious problem in typical deployments

Can increase the "carrier-sense" threshold Signal needs to be stronger before node defers Could this create other problems? Exposed Exposed

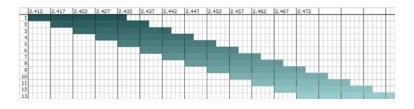
difficult to deal with

· Even hard to detect them!

Some IEEE 802.11 Standards

- IEEE 802.11a
 - PHY Standard: 8 channels: up to 54 Mbps: some deployment
- IEEE 802.11b
 - PHY Standard : 3 channels : up to 11 Mbps : widely deployed.
- IEEE 802.11d
 - · MAC Standard : support for multiple regulatory domains (countries)
- IEEE 802.11e
 - MAC Standard : QoS support : supported by many vendors
- IEEE 802.11f
- · Inter-Access Point Protocol : deployed
- IEEE 802.11g
 - PHY Standard: 3 channels: OFDM and PBCC: widely deployed (as b/g)
- IEEE 802.11h
 - Suppl. MAC Standard: spectrum managed 802.11a (TPC, DFS): standard
- IEEE 802.11i
 - Suppl. MAC Standard: Alternative WEP: standard
- IEEE 802.11n
 - MAC Standard: MIMO: standardization expected late 2008

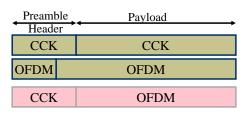
IEEE 802.11 Family



Protocol	Release Data	Freq.	Rate (typical)	Rate (max)	Range (indoor)
Legacy	1997	2.4 GHz	1 Mbps	2Mbps	?
802.11a	1999	5 GHz	25 Mbps	54 Mbps	~30 m
802.11b	1999	2.4 GHz	6.5 Mbps	11 Mbps	~30 m
802.11g	2003	2.4 GHz	25 Mbps	54 Mbps	~30 m
802.11n	2008	2.4/5 GHz	200 Mbps	600 Mbps	~50 m

802.11b Channels

- In the UK and most of EU: 13 channels, 5MHz apart, 2.412 2.472 GHz
- · In the US: only 11 channels
- · Each channel is 22MHz
- · Significant overlap
- · Non-overlapping channels are 1, 6 and 11
- 1, 2, 5.5 and 11 Mbps rates using DSSS technology



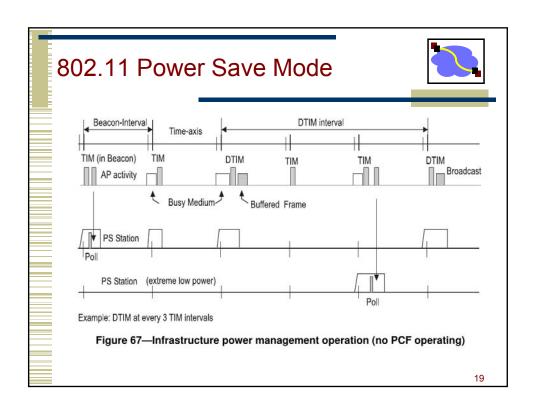
Going Faster: 802.11g

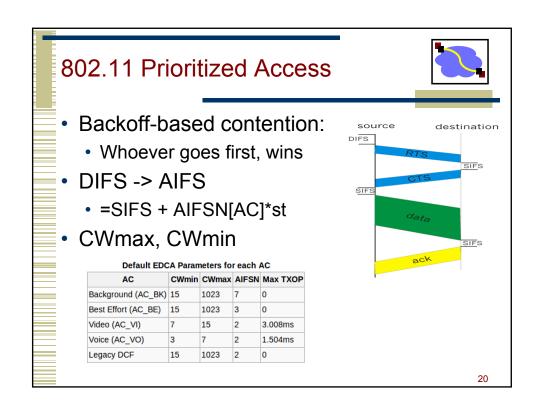
- 802.11g basically extends of 802.11b
 - Use the same technology DSSS for old rates (1,2, 5.5, 11)
 - Uses OFDM technology for new rates (6 Mbs and up)
- Using OFDM makes it easier to build 802.11a/g cards
 - Since 802.11a uses OFDM
- But it creates an interoperability problem since 802.11b cards cannot interpret OFDM signals
 - Solutions: send CTS using CCK before OFDM packets in hybrid environments, or use (optional) hybrid packet format

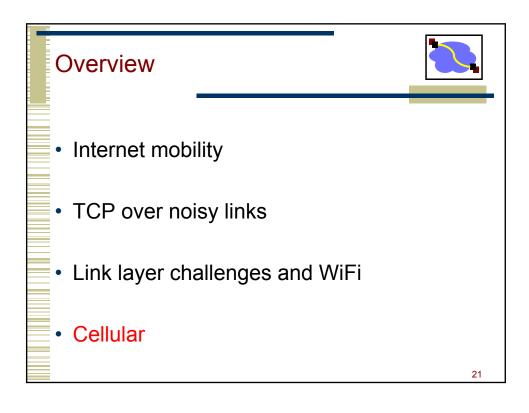
802.11a Discussion

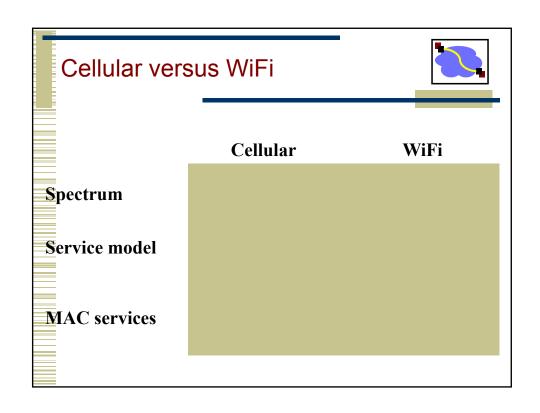
- Uses OFDM in the 5.2 and 5.7 GHz bands
- What are the benefits of 802.11a compared with 802.11b?
 - Greater bandwidth (up to 54Mb)
 - 54, 48, 36, 24, 18, 12, 9 and 6 Mbs
 - Less potential interference (5GHz)
 - · More non-overlapping channels
 - · Less contention due to competition
- But does not provide interoperability with 802.11b, as 802.11g does

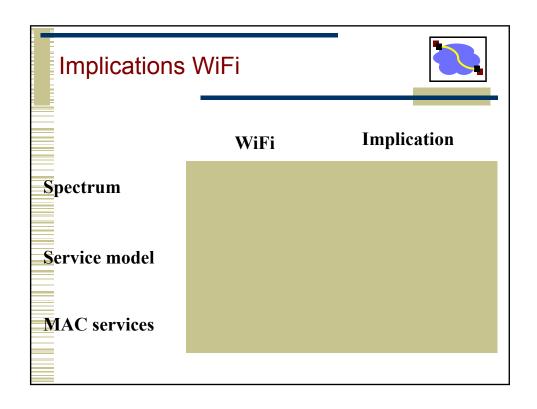
Beyond CSMA: Scheduled Access

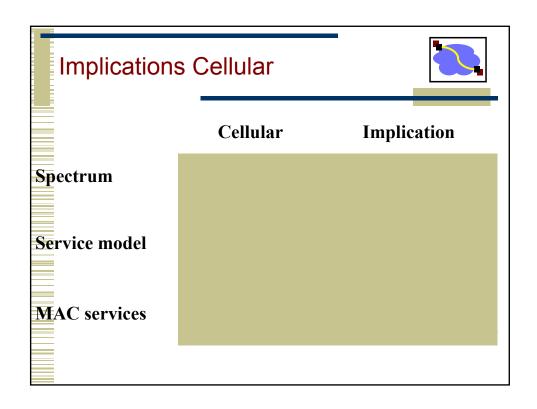



What's wrong with random access?


802.11 Power Save Mode



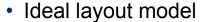

- Core idea: Client sleeps, AP buffers data until client wakes up.
 - Beacons include traffic information map (TIM)
 - (awake) clients request their packets
 - What about broadcast / multicast?



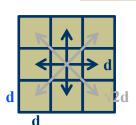
Overview

- Cellular design
- Frequency Reuse
- Capacity and Interference
- · Elements of a cellular network
- How does a mobile phone take place?
- Paging
- Handoff
- Frequency Allocation
- Traffic Engineering

The Advent of Cellular Networks

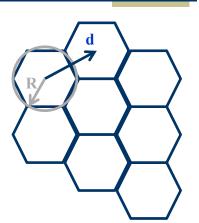


- Mobile radio telephone system was based on:
 - High power transmitter/receivers
 - Could support about 25 channels
 - in a radius of 80 Km
- To increase network capacity:
 - Multiple low-power transmitters (100W or less)
 - Small transmission radius -> area split in cells
 - Each cell with its own frequencies and base station


Cellular Network Design Options

- Simplest layout
 - Adjacent antennas not equidistant – how do you handle users at the edge of the cell?

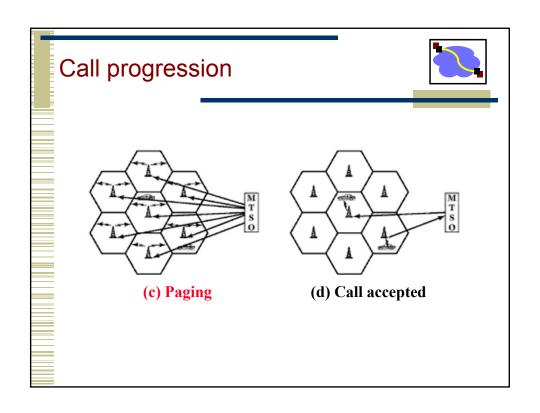
- Although we know signals travel whatever way they feel like
- Hard to work with!

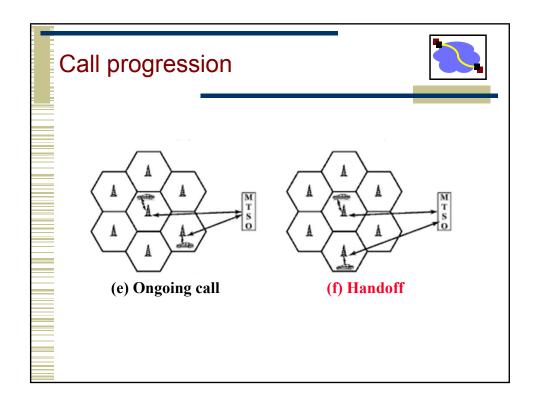


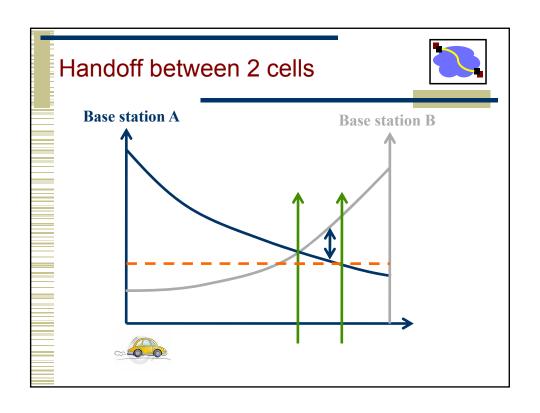
The Hexagonal Pattern

- A hexagon pattern is easier to use and can provide equidistant access to neighboring cell towers
- $d = \sqrt{3}R$
- In practice, variations from ideal due to topological reasons
 - Signal propagation, buildings, foiliage, ...
 - · Tower placement constraints

Call progression







- (a) Monitor for strongest signal (b) Request for connection

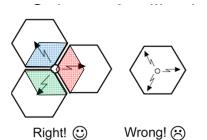
How to Increase Capacity?

- Adding new channels
- Frequency borrowing
- Sectoring antennas
- Microcells
 - · Antennas on top of buildings, even lamp posts
 - · Form micro cells with reduced power
 - · Good for city streets, roads and inside buildings

Cell splitting

- Cell size ~ 6.5-13Km, Minimum ~ 1.5Km
- Requires careful power control and possibly more frequent handoffs for mobile stations
- A radius reduction by a factor of *F* reduces the coverage area and increases the required number of base

 Cell Splitting


a factor of F^2

Cell sectoring

- Cell divided into wedge shaped sectors
- 3-6 sectors per cell, each with own channel set

Cellular Standards

- 1G systems: analog voice
 - Not unlike a wired voice line (without the wire)
- 2G systems: digital voice
 - Many standards
 - Example: GSM FDMA/TDMA, most widely deployed, 200 countries, a billion people
- 2.5G systems: voice and data channels
 - Example: GPRS evolved from GSM, packet-switched, 170 kbps (30-70 in practice)

Cellular Standards

- 3G: voice (circuit-switched) and data (packetswitched)
 - Several standards
 - Most use Code Division Multiple Access (CDMA)
- 4G: 10 Mbps and up, seamless mobility between different cellular technologies
 - LTE the dominating technology
 - · Packet switched
 - Uses Orthogonal Frequency Division Multiplexing (OFDM) for increased robustness wrt. frequency selective fading and mobility