

Lecture 25 – CSMA Protocols Peter Steenkiste

Fall 2016 www.cs.cmu.edu/~prs/15-441-F16

Outline

- Ethernet
- Wireless networking
 - · Wireless Ethernet
 - Aloha
 - 802.11

Reminder: Datalink Functions

- Framing: encapsulating a network layer datagram into a bit stream.
 - Add header, mark and detect frame boundaries, ...
- Error control: error detection and correction to deal with bit errors.
 - Based on error coding or retransmissions
- Flow control: avoid sender overrunning receiver.
- Media access control (MAC): which frame should be sent over the link next.
 - Easy for point-to-point links
 - · Harder for multi-access links: who gets to send?

Datalink Architectures

- Switches connected by point-to-point links -store-and-forward.
 - Used in WAN, LAN, and for home connections
 - · Conceptually similar to "routing"
 - But at the datalink layer instead of the network layer
 - MAC = (local) scheduling
- Multiple access networks -- contention based.
 - Multiple hosts are sharing the same transmission medium
 - Used in LANs and wireless
 - Access control is distributed and much more complex

Random Access Protocols

- When node has packet to send
 - Transmit at full channel data rate R
 - No a priori coordination among nodes
- Two or more transmitting nodes → "collision"
- Random access MAC protocol specifies:
 - · How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - CSMA and CSMA/CD
 - Wireless protocols

Ethernet MAC Features

- Carrier Sense: listen before you talk
 - · Avoid collision with active transmission
- Collision Detection during transmission
 - Listen while transmitting
 - If you notice interference → assume collision
 - Abort transmission immediately saves time
- Why didn't ALOHA have this?
 - Signal strength is reduced by distance for radio
 - May not hear remote transmitter hidden terminal
 - Very difficult for radios to listen and transmit
 - More on this later in the course

Ethernet MAC - CSMA/CD • Carrier Sense Multiple Access/Collision Detection Packet? No Detect Send Carrier Collision Yes Discard Jam channel Packet b=CalcBackoff(); attempts < 16 wait(b); attempts++; attempts == 16

Ethernet CSMA/CD: Making it work

Jam Signal: make sure all other transmitters are aware of collision; 48 bits;

Exponential Backoff:

- If deterministic delay after collision, collisions will occur again in lockstep
- Why not random delay with fixed mean?
 - Few senders → needless waiting
 - Too many senders → too many collisions
- Goal: adapt retransmission attempts to estimated current load
 - heavy load: random wait will be longer

Ethernet Backoff Calculation

- Delay is set as K slots control K
- Exponentially increasing random delay
 - Infer senders from # of collisions
 - More senders → increase wait time
- First collision: choose K from {0,1}; delay is K x 512 bit transmission times
- After second collision: choose K from {0,1,2,3}...
- After ten or more collisions, choose K from {0,1,2,3,4,...,1023}

Minimum Packet Size

- Packets must be long enough to guarantee all nodes observe collision
- Depends on packet size and length of wire
 - Propagation delay
- Min packet length > 2x max prop delay

Delay & Collision Detection

- Speed in cable ~= 60% * c ~= 1.8 x 10^8 m/s
- 10Mb Ethernet, 2.5km cable
 - ~= 12.5us delay
 - +Introduced repeaters (max 5 segments)
 - Worst case 51.2us round trip time!
 - Corresponds to 512 bits
- Also used as slot time = 51.2us for backoff
 - After this time, sender is guaranteed sole access to link
 - Specifically, will have heard any signal sent in the previous slot

Scaling Ethernet

- What about scaling? 10Mbps, 100Mbps, 1Gbps, ...
 - Use a combination of reducing network diameter and increasing minimum minimum packet size
- Reality check: 40 Gbps is 4000 times 10 Mbps
 - 10 Mbps: 2.5 km and 64 bytes -> silly
 - Solution: switched Ethernet see lecture 3
- · What about a maximum packet size?
 - Needed to prevent node from hogging the network
 - 1500 bytes in Ethernet = 1.2 msec on original Ethernet
 - For 40 Gps -> 0.3 microsec -> silly and inefficient

Things to Remember

- Trends from CSMA networks to switched networks
 - · Need for more capacity
 - Low cost and higher line rate
- Emphasis on low configuration and management complexity and cost
 - Fully distributed path selection
- Trends are towards "Software Defined Networks"
 - Network is managed by a centralized controller
 - Allows for the implementation of richer policies
 - · Easier to manage centrally
 - · Already common in data centers

Outline

- Ethernet
- Wireless networking
 - Wireless Ethernet
 - Aloha
 - 802.11

The 802 Class of Standards

- List on next slide
- Some standards apply to all 802 technologies
 - E.g. 802.2 is LLC
 - Important for inter operability
- Some standards are for technologies that are outdated
 - Not actively deployed anymore
 - E.g. 802.6

- Problem: two nodes, hidden from each other, transmit complete frames to base station
- Wasted bandwidth for long duration!

Wireless Collision Avoidance

- Plus also exponential backoff before retransmissions
- Solution: Small reservation packets
 - Nodes track reservation interval with internal "network allocation vector" (NAV)
- Note that nodes still do "physical" carrier sense
 - "Listen before you talk" often works and is cheap

802.1 Overview Document Containing the Reference Model, Tutorial, and Glossary 802 1 h Specification for LAN Traffic Prioritization 802.1 q Virtual Bridged LANs 802.2 Logical Link Control 802.3 Contention Bus Standard 1 Obase 5 (Thick Net) • 802.3a Contention Bus Standard 10base 2 (Thin Net) Broadband Contention Bus Standard 10broad 36 802.3d Fiber-Optic InterRepeater Link (FOIRL) 802.3e Contention Bus Standard 1 base 5 (Starlan) 802.3i Twisted-Pair Standard 10base T Contention Bus Standard for Fiber Optics 10base F 802.3i 802.3u 100-Mb/s Contention Bus Standard 100base T Full-Dunley Ethernet 802.3x 802.3z Gigabit Ethernet 802.3ab Gigabit Ethernet over Category 5 UTF 802.4 Token Bus Standard 802.5 Token Ring Standard Token Ring Standard 4 Mb/s over Unshielded Twisted-Pair 802.5b 802 5f Token Ring Standard 16-Mb/s Operation 802.6 Metropolitan Area Network DQDB 802.7 Broadhand LAN Recommended Practices 802.8 Fiber-Optic Contention Network Practices WiFi Family 802.9a Integrated Voice and Data LAN 802.10 Interoperable LAN Security 802.11 Wireless LAN Standard 802.12 Contention Bus Standard 1 OOVG AnyLAN 802.15 Wireless Personal Area Network Bluetooth, Zigbee, ... 802.16 Wireless MAN Standard

Collision Avoidance: RTS-CTS Exchange

Explicit channel reservation

 Sender: send short RTS: request to send

 Receiver: reply with short CTS: clear to send

 CTS reserves channel for sender, notifying (possibly hidden) stations

RTS and CTS short:

- collisions less likely, of shorter duration
- end result similar to collision detection
- Avoid hidden station collisions
- Not widely used (not used really)
 - Overhead is too high
 - Not a serious problem in typical deployments

33

32

How About Exposed Terminal?

- Can increase the "carrier-sense" threshold
 - Signal needs to be stronger before node defers
- Could this create other problems?
 - Yes not really practical
- Exposed terminals are difficult to deal with
 - Even hard to detect them!
- Good news they are
 - So we live with them

35