
1

15-441 Computer Networking

Lecture 24 – Datalink
Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

15-441 Computer Networking15-441
15-641

Outline

• Encoding and decoding
• Translate between bits and digital signal

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

2

From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream 0 0 1 0 1 1 1 0 0 0 1

Packets 0100010101011100101010101011101110000001111010101110101010101101011010111001

Header/Body Header/Body Header/Body

ReceiverSender
Packet

Transmission

3

Modulation

Encoding

Link Layer: Implementation

• Implemented in “adapter”
• E.g., Ethernet card or chip
• Typically includes: RAM, DSP chips, host bus interface, and link

interface

application
transport
network

link
physical

network
link

physical

M
M
M
M

Ht

HtHn
HtHnHl MHtHnHl

framephys. link

data link
protocol

adapter card

4

2

Datalink Functions

• Encoding: change bit stream before transmission
• Framing: encapsulating a network layer datagram

into a bit stream.
• Add header, mark and detect frame boundaries

• Error control: error detection and correction to deal
with bit errors.
• May also include other reliability support, e.g.

retransmission
• Flow control: avoid that sender outruns the receiver
• Media access: controlling which frame should be

sent next over datalink.
• Hubbing, bridging: extend the size of the network

5

Why Do We Need Encoding?

• Keep receiver synchronized with sender.
• Create control symbols, in addition to regular data

symbols.
• E.g. start or end of frame, escape, ...

• Error detection or error corrections.
• Some codes are illegal so receiver can detect certain

classes of errors
• Minor errors can be corrected by having multiple adjacent

signals mapped to the same data symbol
• Encoding can be done one bit at a time or in multi-bit

blocks, e.g., 4 or 8 bits.
• Encoding can be very complex, e.g. wireless

6

How to Encode?

• Seems obvious, why waste time on this? Just
modulate the signal!

• But:
• How easily can the receiver retrieve the bit stream?
• What happens when there are errors: a bit gets flipped?

V 0

.85

-.85

0 0 0 11 0 1 0 1

7

How about the Poor Receiver?

• Sender needs to help the receiver by “shaping”
the digital bit stream so it easy to correctly
interpret
• Applies to combination of modulation and coding

• Problem in this case: not enough transitions
8

0 1 0 1 How many more ones?

3

Simple Encoding Examples

• Change the bit stream
so there are enough
transitions in the signal
• Helps the receiver

• But this also increases
the complexity of the
signal
• Uses more spectrum!

• Manchester encoding
was used in the original
ethernet

9

V 0

.85

-.85

0 0 0 11 0 1 0 1

Non-Return to Zero (NRZ)

V 0

.85

-.85

0 0 0 11 0 1 0 1

Non-Return to Zero Inverted (NRZI)

V 0

.85

-.85

0 1 1 0

Manchester

Manchester Encoding

• Used by Ethernet
• 0=low to high transition, 1=high to low transition.
• Transitions simplify clock recovery and good electrical

properties for any bit stream
• But you pay a price!

• Doubles the number of transitions – more spectrum!
• Circuitry must run twice as fast

10

V 0

.85

-.85

0 1 1 0

.1s

Take-away:
Encoding and Modulation

• Encoding and modulation work together
• Must generate a signal that works well for the receiver –

has good electrical properties
• Must be efficient with respect to spectrum use
• Can shift some of the burden between the two layers
• Tradeoff is figured out by our electrical engineers

• Maintaining good electrical properties
• Spectrum efficient modulation requires more encoding
• For example: 4B/5B encoding (later)

• Error recovery
• Aggressive modulation needs stronger coding

11

Outline

• Encoding and decoding
• Translate between bits and digital signal

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

12

4

Framing

0100010101011100101010101011101110000001111010101110101010101101011010111001

13

Start
delim

Access
ctrl Body checksumFrame

ctrl
Dest
adr

Src
adr

End
delim

Access
ctrl Body checksumFrame

ctrl
Dest
adr

Src
adr

?

Framing

• A link layer function, defining which bits have
which function.

• Minimal functionality: mark the beginning and end
of packets (or frames).

• Some techniques:
• Out of band delimiters (e.g. 4B/5B control symbols)
• Frame delimiter characters with character stuffing
• Frame delimiter codes with bit stuffing
• Synchronous transmission (e.g. SONET)

• Boundaries are based on timing

14

Delimiter Based

• SYN: sync character
• SOH: start of header
• STX: start of text
• ETX: end of text

• What happens when ETX is in Body?

SYN SYN SOH Header STX Body ETX CRC

15

Character and Bit Stuffing

• Mark frames with special character.
• What happens when the user sends this character?
• Use escape character when a control symbol appears in data:
• *abc*def *abc*def
• Very common on serial lines, in editors, etc.

• Mark frames with special bit sequence (read)
• must ensure data containing this sequence can be transmitted
• example: suppose 11111111 is a special sequence.
• transmitter inserts a 0 when this appears in the data:
• 11111111  111111101 – receiver deletes a 0 after seven 1’s
• Means that we must stuff a zero any time seven 1s appear:
• 11111110  111111100
• receiver unstuffs: 111111100  11111110

16

5

Ethernet Framing

• Preamble is 7 bytes of 10101010 (5 MHz square
wave) followed by one byte of 10101011

• Allows receivers to recognize start of transmission
after idle channel

preamble datagram length more stuff

17

4B/5B Encoding

• Data coded as symbols of 5 line bits  4 data
bits, so 100 Mbps uses 125 MHz.

• Encoding ensures no more than 3 consecutive 0’s
• Uses NRZI to encode resulting sequence

• Uses less frequency than Manchester encoding
• 16 data symbols, 8 control symbols

• Data symbols: 4 data bits
• Control symbols: idle, begin frame, etc.

• Example: FDDI.

18

4B/5B Encoding

0000
0001
0010
0011
0100
0101
0110
0111

11110
01001
10100
10101
01010
01011
01110
01111

Data Code

1000
1001
1010
1011
1100
1101
1110
1111

10010
10011
10110
10111
11010
11011
11100
11101

Data Code

19

From
datalink

To
modulator

Other Encodings

• 8B/10B: Fiber Channel and Gigabit Ethernet
• 64B/66B: 10 Gbit Ethernet (& 40 and 100 Gb/S)
• B8ZS: T1 signaling (old - bit stuffing)

• Encoding and modulation must work together
• Lots of approaches
• Rule of thumb:

• Little bandwidth  complex encoding
• Lots of bandwidth  simple encoding

Things to Remember

20

6

Outline

• Encoding
• Bits to digital signal

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

21

Error Coding

• Transmission may introduce errors into a message.
• Received “digital signal” is different from that transmitted
• Single bit errors versus burst errors

• Detection:
• Requires a convention that some messages are invalid
• Hence requires extra bits
• An (n,k) code has codewords of n bits with k data bits and r

= (n-k) redundant check bits
• Correction

• Forward error correction: many related code words map to
the same data word

• Detect errors and retry transmission

22

Error Detection
• EDC= Error Detection and Correction bits (redundancy)
• D = Data protected by error checking, may include header fields
• Error detection not 100% reliable!

• Protocol may miss some errors, but rarely
• Larger EDC field yields better detection and correction

23

Parity Checking

Single Bit Parity:
Detect single bit errors

24

7

25

Internet Checksum

Sender
• Treat segment contents

as sequence of 16-bit
integers

• Checksum: addition (1’s
complement sum) of
segment contents

• Sender puts checksum
value into checksum field
in header

Receiver
• Compute checksum of

received segment
• Check if computed

checksum equals checksum
field value:
• NO - error detected
• YES - no error detected.

But maybe errors
nonethless?

• Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Basic Concept:
Hamming Distance

• Hamming distance of two bit
strings = number of bit
positions in which they differ.

• If the valid words of a code
have minimum Hamming
distance D, then D-1 bit
errors can be detected.

• If the valid words of a code
have minimum Hamming
distance D, then [(D-1)/2] bit
errors can be corrected.

1 0 1 1 0
1 1 0 1 0

HD=2

HD=3

26

Cyclic Redundancy Codes
(CRC)
• Commonly used codes that have good error

detection properties.
• Can catch many error combinations with a small

number of redundant bits
• Based on division of polynomials.

• Errors can be viewed as adding terms to the polynomial
• Should be unlikely that the division will still work

• Can be implemented very efficiently in hardware.
• Examples:

• CRC-32: Ethernet
• CRC-8, CRC-10, CRC-32: ATM

27

CRC: Basic idea

• Treat bit strings as polynomials:
1 0 1 1 1
X4+ X2+X1+X0

• Sender and Receiver agree on a divisor polynomial
of degree k

• Message of M bits  send M+k bits
• No errors if M+k is divisible by divisor polynomial
• If you pick the right divisor you can:

• Detect all 1 & 2-bit errors
• Any odd number of errors
• All Burst errors of less than k bits
• Some burst errors >= k bits

28

8

Outline

• Encoding
• Bits to digital signal

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

29

What is Used in Practice?

• No flow or error control.
• E.g. regular Ethernet, just uses CRC for error detection

• Flow control only
• E.g. Gigabit Ethernet

• Flow and error control.
• E.g. X.25 (older connection-based service at 64 Kbs

that guarantees reliable in order delivery of data)

• Flow and error control solutions also used in
higher layer protocols
• E.g., TCP for end-to-end flow and error control

30

