15-441 _
"N 15641 Computer Networking

Lecture 24 — Datalink
Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

Outline

N

« Encoding and decoding

¢ Translate between bits and digital signal

e Framing
¢ Bit stream to packets

* Packet loss & corruption
 Error detection

L\

From Signals to Packets

Packet
Transmission

Sendero gﬁ

{ ’ Receiver

0100010101011100101010101011101110000001111010101110101010101101011010111001

Packets
Header/Body Header/Body Header/Body
Bit Stream 00101110001
1Encoding
“Digital” Signal
l IModuIation
Analog Signal

Link Layer: Implementation

"N

e Implemented in “adapter”
* E.g., Ethernet card or chip

¢ Typically includes: RAM, DSP chips, host bus interface, and link

interface
_M
application
Hil M || transport
HiHi] M][network data link | neTwork
Hi[HdH] M link ekl LT Tink
physical Py physical

adapter card

Hi [Hn[H+
frame

M

Datalink Functions i‘.

* Encoding: change bit stream before transmission

» Framing: encapsulating a network layer datagram
into a bit stream.
* Add header, mark and detect frame boundaries

e Error control: error detection and correction to deal
with bit errors.

» May also include other reliability support, e.g.
retransmission

» Flow control: avoid that sender outruns the receiver

» Media access: controlling which frame should be
sent next over datalink.

» Hubbing, bridging: extend the size of the network

Why Do We Need Encoding? i‘.

» Keep receiver synchronized with sender.

» Create control symbols, in addition to regular data
symbols.
e E.g. start or end of frame, escape, ...

» Error detection or error corrections.

* Some codes are illegal so receiver can detect certain
classes of errors

* Minor errors can be corrected by having multiple adjacent
signals mapped to the same data symbol
» Encoding can be done one bit at a time or in multi-bit
blocks, e.g., 4 or 8 bits.

» Encoding can be very complex, e.g. wireless

How to Encode? “

» Seems obvious, why waste time on this? Just
modulate the signal!
0 1 0 0 0 1 1 0 1

.85 |_
\ 0
-85 _I
e But:

* How easily can the receiver retrieve the bit stream?
* What happens when there are errors: a bit gets flipped?

How about the Poor Receiver? “,

0 1 0 1 How many more ones?

» Sender needs to help the receiver by “shaping”
the digital bit stream so it easy to correctly
interpret

e Applies to combination of modulation and coding

« Problem in this case: not enough transitions

Simple Encoding Examples “.
0 1 0 0 0 1 1 0 1 i
& | r « Change the bit stream
Voo ’ I_ “_l so there are enough
8 — transitions in the signal
Non-Return to Zero (NRZ) + Helps the receiver
et o0 0 11 ot » But this also increases
L 1[0 the complexity of the
-85 —. |_| I__ signal
Non-Return to Zero Inverted (NRZI) * Uses more spectrum!
o 1 1 o * Manchester encoding
85 was used in the original
v o | | | | | ethernet
-.85
Manchester

Manchester Encoding “.

.85

\% 0

-85 —

]

dps

e Used by Ethernet
» O=low to high transition, 1=high to low transition.
» Transitions simplify clock recovery and good electrical
properties for any bit stream
e But you pay a price!
¢ Doubles the number of transitions — more spectrum!
¢ Circuitry must run twice as fast
10

Take-away: “

Encoding and Modulation

» Encoding and modulation work together

e Must generate a signal that works well for the receiver —
has good electrical properties

« Must be efficient with respect to spectrum use
e Can shift some of the burden between the two layers
e Tradeoff is figured out by our electrical engineers

* Maintaining good electrical properties
» Spectrum efficient modulation requires more encoding
» For example: 4B/5B encoding (later)

» Error recovery

» Aggressive modulation needs stronger coding
11

Outline i‘.

« Encoding and decoding

¢ Translate between bits and digital signal
e Framing

 Bit stream to packets
e Packet loss & corruption

 Error detection

12

Framing “.

Access Frame Dest Src
ctrl ctrl adr adr

¢

0100010101011100101010101011101110000001111010101110101010101101011010111001

\ '

Access Frame Dest Src End
Body checksum)
delim ctrl ctrl adr adr

Body | checksum |

13

Framing i‘.

» Alink layer function, defining which bits have
which function.
» Minimal functionality: mark the beginning and end
of packets (or frames).
* Some techniques:
e Out of band delimiters (e.g. 4B/5B control symbols)
* Frame delimiter characters with character stuffing
e Frame delimiter codes with bit stuffing

14

Delimiter Based “

» SYN: sync character
SOH: start of header
STX: start of text
ETX: end of text

What happens when ETX is in Body?

Header STX| Body |ETX| CRC |

15

Character and Bit Stuffing i‘.

e Mark frames with special character.
* What happens when the user sends this character?
» Use escape character when a control symbol appears in data:
. *abc*def >*abc*def
« Very common on serial lines, in editors, etc.
« Mark frames with special bit sequence (read)
¢ must ensure data containing this sequence can be transmitted
» example: suppose 11111111 is a special sequence.
e transmitter inserts a 0 when this appears in the data:
¢ 11111111 - 111111101 - receiver deletes a O after seven 1's
* Means that we must stuff a zero any time seven 1s appear:
° 11111110 - 111111100
* receiver unstuffs: 111111100 > 11111110

16

Ethernet Framing

«

» Preamble is 7 bytes of 10101010 (5 MHz square
wave) followed by one byte of 10101011

 Allows receivers to recognize start of transmission

after idle channel

17

4B/5B Encoding

N

e Data coded as symbols of 5 line bits = 4 data

bits, so 100 Mbps uses 125 MHz.

» Encoding ensures no more than 3 consecutive 0's

» Uses NRZI to encode resulting sequence

» Uses less frequency than Manchester encoding
e 16 data symbols, 8 control symbols

e Data symbols: 4 data bits

e Control symbols: idle, begin frame, etc.
e Example: FDDI.

18

4B/5B Encoding

L\

Data | Code
0000 | 11110
0001 | 01001
0010 | 10100
0011 | 10101
0100 | o1010
0101 | 01011
0110 | 01110
0111 | 01111

From To
datalink modulator

Data

1000
1001
1010
1011
1100
1101
1110
1111

Code

10010
10011
10110
10111
11010
11011
11100
11101

19

Other Encodings

"N

e 8B/10B: Fiber Channel and Gigabit Ethernet

B8ZS: T1 signaling (old - bit stuffing)

Things to Remember

64B/66B: 10 Gbit Ethernet (& 40 and 100 Gb/S)

* Encoding and modulation must work together

Lots of approaches
Rule of thumb:

« Little bandwidth - complex encoding
¢ Lots of bandwidth - simple encoding

20

Outline

«

» Encoding
« Bits to digital signal

* Framing
 Bit stream to packets

» Packet loss & corruption
 Error detection

21

Error Coding “.

» Transmission may introduce errors into a message.
* Received “digital signal” is different from that transmitted
¢ Single bit errors versus burst errors

» Detection:

* Requires a convention that some messages are invalid
* Hence requires extra bits

¢ An (n,k) code has codewords of n bits with k data bits and r
= (n-k) redundant check bits

e Correction

« Forward error correction: many related code words map to
the same data word

¢ Detect errors and retry transmission

22

Error Detection

L\

» EDC= Error Detection and Correction bits (redundancy)
« D =Data protected by error checking, may include header fields

e Error detection not 100% reliable!

« Protocol may miss some errors, but rarely

« Larger EDC field yields better detection and correction

| datagram I

«—d diata bits—+{

error

D |EDC] [

+
D' | epcl

— (] bit-error prone link [}

—
detected

23

Parity Checking i‘.

Single Bit Parity:

Detect single bit errors

+—— 4 data bits —{ g:""’

0111000110101011] 0 |

24

Internet Checksum i‘.

» Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Sender Receiver

+ Treat segment contents ||* Compute checksum of
as sequence of 16-bit received segment
integers + Check if computed

checksum equals checksum
field value:

¢ NO - error detected

e Checksum: addition (1's
complement sum) of

segment contents YES - no error detected
e Sender puts checksum But maybe errors)

value into checksum field nonethless?
in header

25

Basic Concept: “.

Hamming Distance

e Hamming distance of two bit
strings = number of bit
positions in which they differ.

« If the valid words of a code
have minimum Hamming
distance D, then D-1 bit
errors can be detected.

* If the valid words of a code
have minimum Hamming
distance D, then [(D-1)/2] bit
errors can be corrected.

Cyclic Redundancy Codes
(CRC) “‘

e Commonly used codes that have good error
detection properties.

e Can catch many error combinations with a small
number of redundant bits

» Based on division of polynomials.
 Errors can be viewed as adding terms to the polynomial
 Should be unlikely that the division will still work
» Can be implemented very efficiently in hardware.
» Examples:
* CRC-32: Ethernet
* CRC-8, CRC-10, CRC-32: ATM

27

CRC: Basic idea i‘.

« Treat bit strings as polynomials:
101 11
X4 X24+X1+X0
» Sender and Receiver agree on a divisor polynomial
of degree k
» Message of M bits = send M+k bits
* No errors if M+k is divisible by divisor polynomial
* If you pick the right divisor you can:
Detect all 1 & 2-bit errors
* Any odd number of errors
» All Burst errors of less than k bits
e Some burst errors >= k bits

28

Outline

«

» Encoding
« Bits to digital signal

* Framing
 Bit stream to packets

» Packet loss & corruption
* Error detection

29

What is Used in Practice? i‘.

No flow or error control.

e E.g. regular Ethernet, just uses CRC for error detection
Flow control only

¢ E.g. Gigabit Ethernet

Flow and error control.

e E.g. X.25 (older connection-based service at 64 Kbs
that guarantees reliable in order delivery of data)

Flow and error control solutions also used in
higher layer protocols
e E.g., TCP for end-to-end flow and error control

30

