
1

15-441 Computer Networking

Lecture 21 – Security:
Key management
Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

15-441
15-641

With slides from: Debabrata Dash, Nick Feamster, Vyas Sekar,
and others

Outline – Creating a Secure Channel

• Security threats

• Cryptography overview

• Securing channels

• Key management

• TOR

2

One last “little detail”…

How do I get these keys in the first place??
Remember:

• Symmetric key primitives assumed Alice and Bob
had already shared a key.

• Asymmetric key primitives assumed Alice knew
Bob’s public key.

This may work with friends, but when was the last
time you saw Amazon.com walking down the street?

3

Symmetric Key Distribution

• How does Andrew do this?

Andrew Uses Kerberos, which relies on a
Key Distribution Center (KDC) to establish
shared symmetric keys.

4

2

Key Distribution Center (KDC)

• Alice, Bob need shared symmetric key.
• KDC: server shares different secret key with each

registered user (many users)
• Alice, Bob know own symmetric keys, KA-KDC KB-KDC , for

communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

5

Key Distribution Center (KDC)

Alice
knows R1

Bob knows to
use R1 to

communicate
with Alice

Alice and Bob communicate: using R1 as
session key for shared symmetric encryption

Q: How does KDC allow Bob, Alice to determine shared symmetric
secret key to communicate with each other?

KDC
generates

R1

KB-KDC(A,R1)

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1))

6

How Useful is a KDC?

• Must always be online to support secure
communication

• KDC can expose our session keys to others!
• Centralized trust and point of failure.

In practice, the KDC model is mostly used within
single organizations (e.g. Kerberos) but not more
widely.

7

Certification Authorities:
Distributing Public Keys

• Certification authority (CA): binds public key to
particular entity, E.

• An entity E registers its public key with CA.
• E provides “proof of identity” to CA.
• CA creates certificate binding E to its public key.
• Certificate contains E’s public key AND the CA’s signature of

E’s public key.

Bob’s
public

key

Bob’s
identifying

information

CA
generates

S = Sign(KB)
CA

private
key

certificate = Bob’s
public key and

signature by CA

KB

K-1
CA

KB

8

3

Certification Authorities

• When Alice wants Bob’s public key:
• Gets Bob’s certificate (Bob or elsewhere).
• Use CA’s public key to verify the signature within

Bob’s certificate, then accepts public key

Verify(S, KB)

CA
public

key KCA

KB If signature
is valid, use
KB

9

Certificate Contents

• info algorithm and key value itself (not shown)

 Cert owner
 Cert issuer
 Valid dates
 Fingerprint

of signature

10

Transport Layer Security (TLS)
aka Secure Socket Layer (SSL)

• Used for protocols like HTTPS

• Special TLS socket layer between application and
TCP (small changes to application).

• Handles confidentiality, integrity, and authentication.

• Uses “hybrid” cryptography.

11

Setup Channel with TLS “Handshake”

Handshake Steps:

1) Client and server negotiate
exact cryptographic protocols

2) Client validates public key
certificate with CA public key.

3) Client encrypts secret random
value with server’s key, and
sends it as a challenge.

4) Server decrypts, proving it has
the corresponding private key.

5) This value is used to derive
symmetric session keys for
encryption & MACs.

12

4

TLS Components

• Handshake authenticates endpoints and creates
keys for confidentiality, integrity of data
• Authentication based on certificates

• Optional – typically client authenticates server only

• Many cryptographic options for sessions key
• Session resumption eliminates 1 RTT, reduces crypto

• Data exchange based on record protocol
• Data stream broken up in chunks, which are encrypted
• Encrypted chunk and MAC form a sequence of records

13

How TLS Handles Data

1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a TLS “record”,
which includes a short header and data that is encrypted, as well as a MAC.

4) Records form a byte stream that is fed to a TCP socket for transmission.

14

TLS Discussion

• The use of TLS is increasing – privacy concerns!
• TLS increases overhead on endpoints, network

• Adds 1-2 RTTs to handshake; involves more packets
• Overhead of key generation; mostly issue on server
• Encryption overhead on server and client – minor

• TLS is very effective but has limitations:
certificates and how they are handled
• Compromised CAs
• Users don’t understand the technology
• Must have “trusted” root certificates

15

Users don’t Understand Certificates

• If the browser detects a problem with a certificate,
it asks user what to do
• Invalid, expired, self-signed, …

• Users often blindly click “yes”
• They don’t know about certificates or TLS; don’t

understand implications of a bad certificates
• Certificates are hard to read and can be

misleading
• Most information makes no sense to user
• Names can be confusing, e.g., minor variants

16

5

Middleboxes: Good or Evil?

• Middleboxes are very widely used in the Internet
• Companies have firewalls
• Cellular operators use caches, compression, …

• But TLS makes middleboxes ineffective
• “Solution”: install fake root certificate on device

• Common for corporate networks
• Sometimes also done by service providers

17

KCA

foo.com

TLS hello

foo

TLS TLS

slide 18

Tor Anonymity Network

• Deployed onion routing network
• http://torproject.org
• Specifically designed for low-latency anonymous

Internet communications
• Running since October 2003

• Thousands of relay nodes, 100K-500K? of users
• Easy-to-use client proxy, integrated Web browser

• Not like FreeNet – no data “in” TOR
• Really an overlay – not pure peer-to-peer

Based on slides by Vitaly Shmatikov

slide 19

Tor Circuit Setup (1)

• Client proxy establish a symmetric session key
and circuit with relay node #1

• All data sent over the circuit is encrypted A = K(B)k

slide 20

Tor Circuit Setup (2)

• Client proxy extends the circuit by establishing a
symmetric session key with relay node #2
• Tunnel through relay node #1
• Relay #1 acts as source for packet to relay #2

• Relay #2 must send packets to relay #1 on reverse path

6

slide 21

Tor Circuit Setup (3)

• Client proxy extends the circuit by establishing a
symmetric session key with relay node #3
• Tunnel through relay nodes #1 and #2
• #2 acts as source for packets to #3

slide 22

Using a Tor Circuit

• Client applications connect and communicate
over the established Tor circuit
• Datagrams decrypted at each link and forwarded to

“previous” node in the Tor circuit
• Need end-to-end encryption – last hop in the clear

slide 23

Using Tor

• Many applications can share one circuit
• Multiple TCP streams over one anonymous connection

• Tor router doesn’t need root privileges
• Encourages people to set up their own routers
• More participants = better anonymity for everyone

• Directory servers
• Maintain lists of active relay nodes, their locations,

current public keys, etc.
• Control how new nodes join the network

• “Sybil attack”: attacker creates a large number of relays

• Directory servers’ keys ship with Tor code

Summary – Part I

• Internet design and growth => security challenges
• Symmetric (pre-shared key, fast) and asymmetric

(key pairs, slow) primitives provide:
• Confidentiality
• Integrity
• Authentication

• “Hybrid Encryption” leverages strengths of both.
• Great complexity exists in securely acquiring keys.
• Crypto is hard to get right, so use tools from others,

don’t design your own (e.g. TLS).

24

7

Resources

• Textbook: 8.1 – 8.3

• Wikipedia for overview of Symmetric/Asymmetric
primitives and Hash functions.

• OpenSSL (www.openssl.org): top-rate open source code
for SSL and primitive functions.

• “Handbook of Applied Cryptography” available free online:
www.cacr.math.uwaterloo.ca/hac/

25

