

Outline – Creating a Secure Channel • Security threats • Cryptography overview • Securing channels • Key management

TOR

How Useful is a KDC?

- Must always be online to support secure communication
- KDC can expose our session keys to others!
- · Centralized trust and point of failure.

In practice, the KDC model is mostly used within single organizations (e.g. Kerberos) but not more widely.

TLS Discussion

- The use of TLS is increasing privacy concerns!
- TLS increases overhead on endpoints, network
 - Adds 1-2 RTTs to handshake; involves more packets
 - Overhead of key generation; mostly issue on server
 - Encryption overhead on server and client minor
- TLS is very effective but has limitations: certificates and how they are handled
 - · Compromised CAs
 - Users don't understand the technology
 - · Must have "trusted" root certificates

Users don't Understand Certificates

- If the browser detects a problem with a certificate, it asks user what to do
 - Invalid, expired, self-signed, ...
- Users often blindly click "yes"
 - They don't know about certificates or TLS; don't understand implications of a bad certificates
- Certificates are hard to read and can be misleading
 - Most information makes no sense to user
 - Names can be confusing, e.g., minor variants

16

Middleboxes: Good or Evil?

- Middleboxes are very widely used in the Internet
 - · Companies have firewalls
 - Cellular operators use caches, compression, ...
- · But TLS makes middleboxes ineffective
- "Solution": install fake root certificate on device
 - · Common for corporate networks
 - Sometimes also done by service providers

Tor Anonymity Network

- Deployed onion routing network
 - http://torproject.org
 - Specifically designed for low-latency anonymous Internet communications
- Running since October 2003
 - Thousands of relay nodes, 100K-500K? of users
- Easy-to-use client proxy, integrated Web browser
 - Not like FreeNet no data "in" TOR
- Really an overlay not pure peer-to-peer

Based on slides by Vitaly Shmatikov

slide 18

Tor Circuit Setup (1)

- Client proxy establish a symmetric session key and circuit with relay node #1
- All data sent over the circuit is encrypted $A = K(B)_k$

Tor Circuit Setup (2)

- Client proxy extends the circuit by establishing a symmetric session key with relay node #2
 - Tunnel through relay node #1
 - Relay #1 acts as source for packet to relay #2
 - Relay #2 must send packets to relay #1 on reverse path

Using Tor

- Many applications can share one circuit
 - Multiple TCP streams over one anonymous connection
- Tor router doesn't need root privileges
 - Encourages people to set up their own routers
 - More participants = better anonymity for everyone
- Directory servers
 - Maintain lists of active relay nodes, their locations, current public keys, etc.
 - Control how new nodes join the network
 - "Sybil attack": attacker creates a large number of relays
 - · Directory servers' keys ship with Tor code

slide 23

Summary - Part I

- Internet design and growth => security challenges
- Symmetric (pre-shared key, fast) and asymmetric (key pairs, slow) primitives provide:
 - Confidentiality
 - Integrity
 - Authentication
- "Hybrid Encryption" leverages strengths of both.
- Great complexity exists in securely acquiring keys.
- Crypto is hard to get right, so use tools from others, don't design your own (e.g. TLS).

24

Resources

- Textbook: 8.1 8.3
- Wikipedia for overview of Symmetric/Asymmetric primitives and Hash functions.
- OpenSSL (<u>www.openssl.org</u>): top-rate open source code for SSL and primitive functions.
- "Handbook of Applied Cryptography" available free online: www.cacr.math.uwaterloo.ca/hac/

25