15-441 :
“ 15641 Computer Networking

Delivering Content: Peer to Peer
Peter Steenkiste

Fall 2015
www.cs.cmu.edu/~prs/15-441-F15

Overview i‘.

* Web
Peer-to-peer

* Motivation
Architectures
BitTorrent
TOR

Skype

e CDN

Video

Scaling Problem

"«

* Millions of clients = server and network meltdown

P2P System

* Leverage the resources of client machines (peers)

e Computation, storage, bandwidth

Why p2p? “

» Harness lots of spare capacity
» 1 Big Fast Server: 1Gbit/s, $10k/month++
» 2,000 cable modems: 1Gbit/s, $??
* 1M end-hosts: Uh, wow.
» Capacity grows with the number of users!
» Build very large-scale, self-managing systems

» Same techniques useful for companies and p2p apps
e E.g., Akamai’'s 14,000+ nodes, Google’s 100,000+ nodes

» Many differences to consider

e Servers versus arbitrary nodes
* Hard state (backups!) versus soft state (caches)

e Security, fairness, freeloading, ..

Common P2P Framework i‘,

ngnn

N1 N 3 New peer
Join
Key="title”
Value=MP3 data... C|ien'g'earch
Pug.sh Lookup(“title™)
Fetch Content
N4 N Nﬁ
9 5 2

What is (was) out there? “

Central |Flood Super- Route

node
flood

Whole Napster |Gnutella Freenet

File

Chunk BitTorrent KaZaA DHTs

Based (bytes, |eDonkey
not 2000
chunks)

Napster: Central Database i\.

123.2.0.18 2 2 Qi

L8

search(A) @2

> L
|123.2.0.18

e

| hawéhXreyisalild AP S5
123.2.21.23

Join: contact server

Napster: Discussion

"«

* Pros:
* Simple
» Search scope is O(1)
» Controllable (pro or con?)
* Cons:
» Server maintains O(N) State
» Server does all processing
* Single point of failure

Gnutella: Flooding

L\

| have file A. n.<—l

R
N

file A.

| have

"
M
Y

Where is file A? &E52

g 3

Join: contact peers
Publish: noop

Fetch: direct p2p 1

Gnutella: Discussion

"«

e Pros:
* Fully de-centralized
e Search cost distributed

* Processing @ each node permits powerful search

semantics
* Cons:
» Search scope is O(N)
» Search time is O(???)

* Nodes leave often, network unstable

e TTL-limited search works well for haystacks.

» For scalability, does NOT search every node.
* May have to re-issue query later

11

KaZaA: Query Flooding

"«

 Also very popular

First released in 2001 and still used today

» Join: on startup, client contacts a “supernode” ... may at

some point become one itself
» Publish: send list of files to supernode

» Search: send query to supernode, supernodes flood query

amongst themselves.

» Fetch: get the file directly from peer(s); can fetch
simultaneously from multiple peers

12

KaZaA: Intelligent Query Flooding i‘

“Super Nodes” Group of servers:
i Gnutella-style
Flooding

Napster-style
Client-server,

Model 25 & 9

13

KaZaA: File Insert and Query i‘.

insert(X,
123.2.21.23)

. \
8 -

Publish

| have X! B

123.2.21.23

14

KaZaA: File Search

"«

search(A)

P BB
123.2.22.50 ‘

search(A)

123 2.0.18

\\

123% 18

Where is file A? B

15

KaZaA: Discussion

"«

* Works better than Gnutella because of query consolidation
» Several nodes may have requested file... How to tell?

» Must be able to distinguish identical files
* Not necessarily same filename
» Same filename not necessarily same file...

* Use Hash of file

e Can fetch bytes [0..1000] from A, [1001...2000] from B

* Pros: Tries to take into account node heterogeneity:

« Bandwidth, computational resources, ...

» Cons: Still no guarantees on search scope or time

» Challenge: want stable superpeers — good prediction

* Must also be capable platforms

16

KaZaA: Discussion

"«

* Pros:
» Tries to take into account node heterogeneity:
¢ Bandwidth
* Host Computational Resources
* Host Availability (?)
* Rumored to take into account network locality
* Cons:
* Mechanisms easy to circumvent
« Still no real guarantees on search scope or search time

» Similar behavior to gnutella, but better.

17

Overview

"«

* Web
Peer-to-peer

* Motivation
Architectures
BitTorrent

« TOR

Skype

e CDN

Video

18

BitTorrent: Swarming “

Started in 2001 to efficiently support flash crowds
» Focus is on fetching, not searching

* Publish: Run a tracker server.
» Search: Find a tracker out-of-band for a file, e.g., Google
» Join: contact central “tracker” server for list of peers.

* Fetch: Download chunks of the file from your peers.
Upload chunks you have to them.
» Comparison with earlier architectures:
» Focus on fetching of “few large files”
* Chunk based downloading
» Anti-freeloading mechanisms

19

BitTorrent: Publish/Join i‘.

‘Tracker

SN,

28—

20

10

BitTorrent: Fetch n

——

AN

. 8- 2
n<—>n
. -
BitTorrent: Sharing Strategy i‘.

* Employ “Tit-for-tat” sharing strategy
* Ais downloading from some other people
* A will let the fastest N of those download from him

* Be optimistic: occasionally let freeloaders download
e Otherwise no one would ever start!

¢ Also allows you to discover better peers to download from when
they reciprocate

* Goal: Pareto Efficiency

* Game Theory: “No change can make anyone better off
without making others worse off”

* Does it work? (don’t know!)

22

11

BitTorrent: Summary “

* Pros:
* Works reasonably well in practice

» Gives peers incentive to share resources; avoids
freeloaders

* Cons:
» Pareto Efficiency relative weak condition
» Central tracker server needed to bootstrap swarm

» (Tracker is a design choice, not a requirement, as you
know from your projects. Could easily combine with
other approaches.)

23

When are p2p Useful? i\,

* Works well for caching and “soft-state”, read-only data

* Works well! BitTorrent, KaZaA, etc., all use peers as
caches for hot data

« Difficult to extend to persistent data

* Nodes come and go: need to create multiple copies for
availability and replicate more as nodes leave

* Not appropriate for search engine styles searches

» Complex intersection queries (“the” + “who”): billions of
hits for each term alone

» Sophisticated ranking: Must compare many results
before returning a subset to user

* Need massive compute power

24

12

Overview “

« Web
Peer-to-peer

* Motivation

» Architectures
e BitTorrent

« TOR

» Skype

e CDN

Video

25

Tor Anonymity Network i‘,

Deployed onion routing network
* http://torproject.org

» Specifically designed for low-latency anonymous
Internet communications

Running since October 2003

* Thousands of relay nodes, 100K-500K? of users
Easy-to-use client proxy, integrated Web browser

* Not like FreeNet — no data “in” TOR

Really an overlay — not pure peer-to-peer

Based on slides by Vitaly Shmatikov

13

Tor Circuit Setup (1)

"«

» Client proxy establish a symmetric session key and

circuit with relay node #1 \

 All data sent over the circuit is encrypted

Client
Initiator

A=K(B),

Tor Circuit Setup (2)

"«

» Client proxy extends the circuit by establishing a
symmetric session key with relay node #2

* Tunnel through relay node #1

O

14

Tor Circuit Setup (3) “

» Client proxy extends the circuit by establishing a
symmetric session key with relay node #3

e Tunnel through relay nodes #1 and #2

Client
Initiator

Using a Tor Circuit i‘.

» Client applications connect and communicate over the
established Tor circuit

» Datagrams decrypted at each link
* Also want end-to-end encryption — not done by Tor

Client
Initiator

15

Using Tor “

* Many applications can share one circuit

* Multiple TCP streams over one anonymous connection
» Tor router doesn’t need root privileges

* Encourages people to set up their own routers

» More participants = better anonymity for everyone
 Directory servers

* Maintain lists of active relay nodes, their locations,
current public keys, etc.

 Control how new nodes join the network
« “Sybil attack”: attacker creates a large number of relays

 Directory servers’ keys ship with Tor code

Overview i‘.

* Web
Peer-to-peer

* Motivation
 Architectures
 BitTorrent

« TOR

» Skype

e CDN

Video

32

16

What is Skype? “

Support pc-to-pc, pc-to-phone, phone-to-pc VolP and IM
client communication

» Also: conference calls, video, ...

Developed by people who created KaZaa

» Has peer-to-peer features that will look familiar
Supported OS: Windows, Linux, MacOS, PocketPC
A p2p illusion

* Login server

» Buddy-list server

o Servers for SkypeOut and Skypeln

* Anonymous call minutes statistic gathering

Based on slides by Baset and Schulzrinne (Infocom 06) 33

What problems does it solve? i\,

NAT and firewall traversal

* Nielsen September 2005 ratings
¢ 61.3% of US home internet users use broadband
(http://www.nielsen-netratings.com/pr/pr_050928.pdf)
¢ ‘Most’ users have some kind of NAT

Calls between traditional telephone and internet devicese
» SkypeOut (pc-to-phone)
« Terms of service: governed by the laws of Luxembourg
» Skypeln (phone-to-pc), voicemail
Configuration-less connectivity
Scalability for member data and call bandwidth

34

17

The Skype Network “

Skype login
server

M_e:ssgef)_(change d Ordlnary hOSt (OH)
durngogn * A Skype client (SC)
e Super nodes (SN)

» A Skype client (SC)

* Has public IP address,
‘sufficient’ bandwidth, CPU
and memory

* Login server

» Stores Skype id’s,
passwords, and buddy lists

[] ordinary host (SC)
. super node (SN) ° Used at |Og|ﬂ for
- neighbor relationships in the aUthentlcatlon
Skype network 35

Ports used by Clients i‘.

* No default listening port
* Randomly chooses a port (P1) on installation
* Opens TCP and UDP listener sockets at P1

* Opens TCP listener sockets at port 80 (HTTP)
and port 443 (HTTPS)

R T— « Clients also use a cache:
g i * IP addresses and port
_— E— numbers of supernodes

* Login server IP address and
port number

N Use port {1341 for incorming connections

G [¥ Use port B0 and 443 as alternatives for incoming connections
] Hosers

36

18

Skype Functions: LOGIN

"«

* Public, NAT

» Establishes a TCP connection with the supernode
« Keep connection alive by sending refresh message every 2 min.

» Authenticates with the login server

* Announces arrival on the network (controlled flooding)

» Determines NAT type
* Firewall

» Establishes a TCP connection with the supernodes

» Authenticates with the login server

37

Skype Functions: USER SEARCH

"«

From the Skype website

» Guaranteed to find a user it exists and logged in the last 72

hours

Cannot force a node to become a SN

Search results are cached at intermediate nodes

* Host cache is used for connection establishment and not for

SN selection

» Skype contacts login server for failed searches

User does not exist. How does search terminate?

38

19

Skype Functions: CALL “

ESTABLISHMENT

Call signaling always carried over TCP and goes
eze

Calls to non buddies=search+call

Public-public call
» Caller establishes a TCP connection with callee

Public-NAT
 Caller is behind port-restricted NAT

« Different solutions based on the nature of the NAT
 Caller----> supernode ----> Callee

* TCP connections established between caller, callee,
and more than one Skype nodes

Firewall-firewall call
e Same as public-NAT but no in-UDP packets

39

Skype Functions: MEDIA i\.

TRANSFER

No silence suppression

Silence packets are used to

 play background noise at the peer

* maintain UDP NAT binding

 avoid drop in the TCP congestion window
Putting a call on hold

» 1 packet/3 seconds to call-peer or Skype node
¢ same reasons as above

Codec frequency range

» 50-8,000 Hz (total bw of 3 kilobytes/s)
Reasonable call quality at (4-5 kilobytes/s)

40

20

