
1

15-441 Computer Networking

Delivering Content: Peer to Peer
Peter Steenkiste

Fall 2015
www.cs.cmu.edu/~prs/15-441-F15

15-441
15-641

Overview

• Web

• Peer-to-peer

• Motivation

• Architectures

• BitTorrent

• TOR

• Skype

• CDN

• Video

2

2

3

Scaling Problem

• Millions of clients  server and network meltdown

4

P2P System

• Leverage the resources of client machines (peers)
• Computation, storage, bandwidth

3

5

Why p2p?

• Harness lots of spare capacity
• 1 Big Fast Server: 1Gbit/s, $10k/month++
• 2,000 cable modems: 1Gbit/s, $??
• 1M end-hosts: Uh, wow.
• Capacity grows with the number of users!

• Build very large-scale, self-managing systems
• Same techniques useful for companies and p2p apps

• E.g., Akamai’s 14,000+ nodes, Google’s 100,000+ nodes

• Many differences to consider
• Servers versus arbitrary nodes
• Hard state (backups!) versus soft state (caches)
• Security, fairness, freeloading, ..

6

Common P2P Framework

Internet

N1
N2 N3

N6N5
N4

Publish

Key=“title”
Value=MP3 data… Client Search

Lookup(“title”)

?

Fetch Content

New peer
Join

4

7

What is (was) out there?

Central Flood Super-
node
flood

Route

Whole

File

Napster Gnutella Freenet

Chunk

Based

BitTorrent KaZaA
(bytes,
not
chunks)

DHTs

eDonkey
2000

8

Napster: Central Database

I have X, Y, and Z!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23
Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

Join: contact server

5

9

Napster: Discussion

• Pros:
• Simple

• Search scope is O(1)

• Controllable (pro or con?)

• Cons:
• Server maintains O(N) State
• Server does all processing
• Single point of failure

10

I have file A.

I have file A.

Gnutella: Flooding

Where is file A?

Query

Reply

Join: contact peers
Publish: noop
Fetch: direct p2p

6

11

Gnutella: Discussion

• Pros:
• Fully de-centralized
• Search cost distributed
• Processing @ each node permits powerful search

semantics

• Cons:
• Search scope is O(N)
• Search time is O(???)
• Nodes leave often, network unstable

• TTL-limited search works well for haystacks.
• For scalability, does NOT search every node.
• May have to re-issue query later

12

KaZaA: Query Flooding

• First released in 2001 and still used today
• Also very popular

• Join: on startup, client contacts a “supernode” ... may at
some point become one itself

• Publish: send list of files to supernode
• Search: send query to supernode, supernodes flood query

amongst themselves.
• Fetch: get the file directly from peer(s); can fetch

simultaneously from multiple peers

7

13

KaZaA: Intelligent Query Flooding

“Super Nodes” Group of servers:
Gnutella-style

Flooding

Napster-style
Client-server

Model

14

KaZaA: File Insert and Query

I have X!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

8

15

KaZaA: File Search

Where is file A?

Query

search(A)
-->
123.2.0.18

search(A)
-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

16

KaZaA: Discussion

• Works better than Gnutella because of query consolidation
• Several nodes may have requested file... How to tell?

• Must be able to distinguish identical files
• Not necessarily same filename
• Same filename not necessarily same file...

• Use Hash of file
• Can fetch bytes [0..1000] from A, [1001...2000] from B

• Pros: Tries to take into account node heterogeneity:
• Bandwidth, computational resources, …

• Cons: Still no guarantees on search scope or time

• Challenge: want stable superpeers – good prediction

• Must also be capable platforms

9

17

KaZaA: Discussion

• Pros:
• Tries to take into account node heterogeneity:

• Bandwidth

• Host Computational Resources

• Host Availability (?)

• Rumored to take into account network locality

• Cons:
• Mechanisms easy to circumvent

• Still no real guarantees on search scope or search time

• Similar behavior to gnutella, but better.

Overview

• Web

• Peer-to-peer

• Motivation

• Architectures

• BitTorrent

• TOR

• Skype

• CDN

• Video

18

10

19

BitTorrent: Swarming

• Started in 2001 to efficiently support flash crowds
• Focus is on fetching, not searching

• Publish: Run a tracker server.
• Search: Find a tracker out-of-band for a file, e.g., Google
• Join: contact central “tracker” server for list of peers.
• Fetch: Download chunks of the file from your peers.

Upload chunks you have to them.
• Comparison with earlier architectures:

• Focus on fetching of “few large files”
• Chunk based downloading
• Anti-freeloading mechanisms

20

BitTorrent: Publish/Join

Tracker

11

21

BitTorrent: Fetch

22

BitTorrent: Sharing Strategy

• Employ “Tit-for-tat” sharing strategy
• A is downloading from some other people

• A will let the fastest N of those download from him

• Be optimistic: occasionally let freeloaders download
• Otherwise no one would ever start!
• Also allows you to discover better peers to download from when

they reciprocate

• Goal: Pareto Efficiency
• Game Theory: “No change can make anyone better off

without making others worse off”
• Does it work? (don’t know!)

12

23

BitTorrent: Summary

• Pros:
• Works reasonably well in practice
• Gives peers incentive to share resources; avoids

freeloaders

• Cons:
• Pareto Efficiency relative weak condition
• Central tracker server needed to bootstrap swarm
• (Tracker is a design choice, not a requirement, as you

know from your projects. Could easily combine with
other approaches.)

24

When are p2p Useful?

• Works well for caching and “soft-state”, read-only data

• Works well! BitTorrent, KaZaA, etc., all use peers as
caches for hot data

• Difficult to extend to persistent data

• Nodes come and go: need to create multiple copies for
availability and replicate more as nodes leave

• Not appropriate for search engine styles searches

• Complex intersection queries (“the” + “who”): billions of
hits for each term alone

• Sophisticated ranking: Must compare many results
before returning a subset to user

• Need massive compute power

13

Overview

• Web

• Peer-to-peer

• Motivation

• Architectures

• BitTorrent

• TOR

• Skype

• CDN

• Video

25

slide 26

Tor Anonymity Network

• Deployed onion routing network

• http://torproject.org

• Specifically designed for low-latency anonymous
Internet communications

• Running since October 2003

• Thousands of relay nodes, 100K-500K? of users

• Easy-to-use client proxy, integrated Web browser

• Not like FreeNet – no data “in” TOR

• Really an overlay – not pure peer-to-peer

Based on slides by Vitaly Shmatikov

14

slide 27

Tor Circuit Setup (1)

• Client proxy establish a symmetric session key and
circuit with relay node #1

• All data sent over the circuit is encrypted A = K(B)k

slide 28

Tor Circuit Setup (2)

• Client proxy extends the circuit by establishing a
symmetric session key with relay node #2

• Tunnel through relay node #1

15

slide 29

Tor Circuit Setup (3)

• Client proxy extends the circuit by establishing a
symmetric session key with relay node #3

• Tunnel through relay nodes #1 and #2

slide 30

Using a Tor Circuit

• Client applications connect and communicate over the
established Tor circuit

• Datagrams decrypted at each link

• Also want end-to-end encryption – not done by Tor

16

slide 31

Using Tor

• Many applications can share one circuit

• Multiple TCP streams over one anonymous connection

• Tor router doesn’t need root privileges

• Encourages people to set up their own routers

• More participants = better anonymity for everyone

• Directory servers

• Maintain lists of active relay nodes, their locations,
current public keys, etc.

• Control how new nodes join the network
• “Sybil attack”: attacker creates a large number of relays

• Directory servers’ keys ship with Tor code

Overview

• Web

• Peer-to-peer

• Motivation

• Architectures

• BitTorrent

• TOR

• Skype

• CDN

• Video

32

17

33

What is Skype?

• Support pc-to-pc, pc-to-phone, phone-to-pc VoIP and IM
client communication
• Also: conference calls, video, …

• Developed by people who created KaZaa
• Has peer-to-peer features that will look familiar

• Supported OS: Windows, Linux, MacOS, PocketPC
• A p2p illusion

• Login server
• Buddy-list server
• Servers for SkypeOut and SkypeIn
• Anonymous call minutes statistic gathering

Based on slides by Baset and Schulzrinne (Infocom 06)

34

What problems does it solve?

• NAT and firewall traversal

• Nielsen September 2005 ratings
• 61.3% of US home internet users use broadband

(http://www.nielsen-netratings.com/pr/pr_050928.pdf)

• ‘Most’ users have some kind of NAT

• Calls between traditional telephone and internet devicese
• SkypeOut (pc-to-phone)

• Terms of service: governed by the laws of Luxembourg

• SkypeIn (phone-to-pc), voicemail

• Configuration-less connectivity

• Scalability for member data and call bandwidth

18

35

The Skype Network

• Ordinary host (OH)
• A Skype client (SC)

• Super nodes (SN)
• A Skype client (SC)
• Has public IP address,

‘sufficient’ bandwidth, CPU
and memory

• Login server
• Stores Skype id’s,

passwords, and buddy lists
• Used at login for

authentication

36

Ports used by Clients

• No default listening port
• Randomly chooses a port (P1) on installation
• Opens TCP and UDP listener sockets at P1
• Opens TCP listener sockets at port 80 (HTTP)

and port 443 (HTTPS)

• Clients also use a cache:
• IP addresses and port

numbers of supernodes
• Login server IP address and

port number

19

37

Skype Functions: LOGIN

• Public, NAT
• Establishes a TCP connection with the supernode

• Keep connection alive by sending refresh message every 2 min.

• Authenticates with the login server
• Announces arrival on the network (controlled flooding)
• Determines NAT type

• Firewall
• Establishes a TCP connection with the supernodes
• Authenticates with the login server

38

Skype Functions: USER SEARCH

• From the Skype website
• Guaranteed to find a user it exists and logged in the last 72

hours

• Search results are cached at intermediate nodes
• Cannot force a node to become a SN

• Host cache is used for connection establishment and not for
SN selection

• User does not exist. How does search terminate?
• Skype contacts login server for failed searches

20

39

Skype Functions: CALL
ESTABLISHMENT

• Call signaling always carried over TCP and goes
e2e

• Calls to non buddies=search+call
• Public-public call

• Caller establishes a TCP connection with callee
• Public-NAT

• Caller is behind port-restricted NAT
• Different solutions based on the nature of the NAT

• Caller----> supernode ----> Callee
• TCP connections established between caller, callee,

and more than one Skype nodes
• Firewall-firewall call

• Same as public-NAT but no in-UDP packets

40

Skype Functions: MEDIA
TRANSFER

• No silence suppression
• Silence packets are used to

• play background noise at the peer
• maintain UDP NAT binding
• avoid drop in the TCP congestion window

• Putting a call on hold
• 1 packet/3 seconds to call-peer or Skype node
• same reasons as above

• Codec frequency range
• 50-8,000 Hz (total bw of 3 kilobytes/s)

• Reasonable call quality at (4-5 kilobytes/s)

