15-441 :
“ 15641 Computer Networking

TCP Performance and the Web
Peter Steenkiste

Fall 2015

www.cs.cmu.edu/~prs/15-441-F15

Outline TCP

"«

e TCP status and evolution (last week)
e TCP performance model (today)

e Throughput model

 Implications

TCP Modeling “

» Given the congestion behavior of TCP can we predict what
type of performance we should get?

* What are the important factors
* Loss rate: Affects how often window is reduced
» RTT: Affects increase rate and relates BW to window
* RTO: Affects performance during loss recovery
* MSS: Affects increase rate (additive increase)

Overall TCP Behavior i‘.

» Let us concentrate on steady state behavior with
no timeouts and perfect loss recovery

» Packets transferred = area under curve
* Itis a simple geometry problem!

Window
NV \ddd

Time

Transmission Rate

"«

 What is area under curve?
* Window in packets
e Timein RTTs
e A =avg window * time
=% W * T (packets)
* What was bandwidth?
e BW=A/T=%W
e In packets per RTT
» Convert to bytes per second
e BW=3%W*MSS/RTT

* What is W?
e Depends on loss rate

Wi n‘gow
T
W
W/2
: |
1 |
1 |
L 1
Time

Simple TCP Model

"«

* Some additional assumptions

* Fixed RTT
* No delayed ACKs

* In steady state, TCP loses a packet each time window

reaches W packets

* Window drops to W/2 packets

* Each RTT window increases by 1 packet

-> W/2 * RTT between packet losses

Simple Loss Model “

* What was the loss rate?
» Packets transferred = (3% W/RTT) * (W/2 * RTT) = 3W?/8
e 1 packet lost - loss rate = p = 8/3W?

cw= |2
3p
- BW=%*W*MSS/RTT

w= |8 _4, |3
3p 3 \2p

Implication 1: Fairness i‘.

* Flows sharing bottleneck do NOT get same bandwidth!
* Fairness: BW proportional to 1/RTT
e TCPis “RTT fair”

» Only “if all else is equal” do flows sharing a bottleneck
get the same bandwidth

* Not by design

Implication 2: High Speed Networks

"«

~

V1.5 MSS
RTT

p
* Suppose RTT = 100 ms, MSS = 1.5 KB
« T =100 Gb/sec

. p:’?

e« pr2x 10712
» 1 drop every 6 petabits (17 hours).

*+ So....

TCP over High-Speed Networks

"«

e A TCP connection with 1250-Byte packet size and 100ms RTT is running
over a 10Gbps link (assuming no other connections, and no buffers at

routers)
_ ld4hours , 14hours ., 1.4hours
A Packetloss Packet loss Packet loss Packet loss TCP
cwnd 10Gbps
5Ghps
| fe I I I -
Slow start Congestion avoidance Time (RTT)

Source: Rhee, Xu. “Congestion Control on High-Speed Networks”

10

TCP (CU)BIC

"«

* Goal is to spend more time at the high end of the window

value range

* Remember: 1.4 hours to reach Wmax on 10 Gbs link?

* ldea: make the additive increase adaptive depending on
how close you are to presumed Wmax value

» Fast recovery using larger additive increase toward

Wmax
* Slow change around Wmax
» Fast search for a higher Wmax

11

TCP CUBIC in one slide

"«

4008

3588 -

feda2a0: 0 of

2588 -

2@aaA

CHND Cpackets?

T
CUBIC-1

CUBIC-2
TCP-1

TCF-2

12

Implication 3: “

How about non-TCP flow?

» Certain types of flow cannot use TCP

» E.g., multi-media streaming: timeouts add excessive delays,
reducing “Quality of Experience”

* Require custom transport, but what congestion control?
Solution TCP: make them “TCP friendly”

» “Like TCP but smoother”

» Motivation is that they need to coexist nicely with TCP

» Should hold their own without clobbering TCP flows

* Their throughput must follow that of the TCP equation

» Calculated smoothed estimates of RTT, p, ...
» Do TCP-Friendly Rate Control (TFRC) based on TCP equation
» Adjust rate w/o timeouts

13

Overview Content Delivery i‘.

Web

* Protocol interactions
e Caching

» Cookies
Peer-to-peer

CDNs

Video

14

Web history “

1945: Vannevar Bush, “As we may think”, Atlantic
Monthly, July, 1945.

» Describes the idea of a distributed hypertext system.

* A “memex” that mimics the “web of trails” in our minds.

1989: Tim Berners-Lee (CERN) writes internal proposal
to develop a distributed hypertext system

» Connects “a web of notes with links”.

 Intended to help CERN physicists in large projects share and
manage information

1990: TBL writes graphical browser for Next machines
1992-1994: NCSA/Mosaic/Netscape browser release

15

Internet Traffic History i\.

100000

10000 Alt
——Fixed /
1000
Mobile /
100

10 /
1

O N IV O > P A OO NN O XL A @O0 N A
e e e L R e e e e N N N N N N e N A N N e P
\@e@e@/é@@@@«@@@@@@@@@@@@

0.1
0.01 /
0.001

PByte/month

Year

16

Typical Workload (Web Pages) “

» Multiple (typically small) objects per page

* File sizes «Lots of small objects
* Heavy-tailed versus TCP
« Pareto distribution for tail * 3-way handshake
+ Lognormal for body of distribution | e Lots of slow starts
e Embedded references * Extra connection state

* Number of embedded objects also Pareto
Pr(X>x) = (X/X) X
* This plays havoc with performance. Why?
* Solutions?

17

HTTP 0.9/1.0 i‘,

« One request/response per TCP connection

» Simple to implement
» Short transfers are very hard on TCP
* Multiple connection setups - three-way handshake
each time
e Several extra round trips added to transfer

* Many slow starts — low throughput because of small
window

* Never leave slow start for short transfers
» Loss recovery is poor when windows are small
* Lots of extra connections

« Increases server state/processing

18

Single Transfer Example

"«

Client

Client opens TCP

Client sends HTTP request
for HTML

Client parses HTML

Client opens TCP
connection

Client sends HTTP request
for image

4 RTT ..]

Image begins to arrive

Server
iServer reads from

disk

i Server reads from
disk

19

HTTP 1.1

"«

e Multiplex multiple transfers onto one TCP connection
» Avoid handshake and slow start when getting multiple objects from

same server

» Transfers can be pipelined, i.e., multiple outstanding

requests

* Requests are handled in FIFO order by server

* How to identify requests/responses?

e Delimiter > Server must examine response for delimiter string
» Content-length and delimiter > Must know size of transfer in

advance

» Block-based transmission = send in multiple length delimited

blocks

» Store-and-forward - wait for entire response and then use

content-length

20

10

Persistent Connection Solution “

Server

O RTT ... DAT
Client sends HTTP request ACK l Server reads from
for HTML index page paT | disk

1 RTT l ACK
Client parses HTML DAT

P l Server reads from

Client sends HTTP request

ACK paT | disk

X =3 /

for image

Image begins to arrive

21

Some Challenges with HTTP 1.1 N

Head of line blocking: “slow” objects can delay all requests
that follow

* E.g., objects from disk versus objects in cache

» Browsers open multiple TCP connections to achieve
parallel transfers

* Increases load on servers and network
 HTTP headers are big

» Cost higher for small objects
 Embedded objects add RTT

» With small objects, RTT dominates

22

HTTP 2.0 to the Rescue “

Can multiplex many requests over a TCP connection AND

* Responses are carried over flow controlled streams —
avoids HOL blocking

» Streams can be prioritized by client based on how
critical they are to rendering

HTTP headers are compressed

A PUSH features allows server to push embedded objects
to the client without waiting for a client request

e Avoids an RTT
* What is the challenge?
Default is to use TLS — fall back on 1.1 otherwise

23

Web Proxy Caches i‘.

» User configures browser: Web origin
accesses via cache server
* Browser sends all HTTP
requests to cache
» Object in cache: cache
returns object
» Else cache requests object
from origin server, then
returns object to client

origin
server

24

No Caching Example (1) “

Assumptions

* Average object size = 100,000 bits

e Avg. request rate from institution’s
browser to origin servers = 15/sec

* Delay from institutional router to
any origin server and back to router
=2 sec

Consequences

» Utilization on LAN = 15%

» Utilization on access link = 100%

e Total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + milliseconds

@ origin
@ servers
public
Internet _@

1.5 Mbps
access link

institutional

e 10 Mbps LAN

25

No Caching Example (2) i‘.

Possible solution

¢ Increase bandwidth of access link
to, say, 10 Mbps

» Often a costly upgrade

Consequences
e Utilization on LAN = 15%
e Utilization on access link = 15%

e Total delay = Internet delay + access
delay + LAN delay

= 2 sec + msecs + msecs

74 -
origin
@\ T @ servers
public
Internet _@

10 Mbps
access link

institutional

R 10 Mbps LAN

26

13

With Caching Example (3)

"«

Install cache

Suppose hit rate is .4

Consequence

40% requests will be satisfied almost
immediately (say 10 msec)

60% requests satisfied by origin server

Utilization of access link reduced to 60%,

resulting in negligible delays
Weighted average of delays

= .6*2 sec + .4*10msecs < 1.3 secs

¢ L

@ origin
servers

Internet _@

institutional
network

1.5 Mbps
access link

10 Mbps LAN

FYYTY!

institutional
cache

27

HTTP Caching

"«

Clients often cache documents

» Challenge: update of documents
* If-Modified-Since requests to check

e HTTP 0.9/1.0 used just date

« HTTP 1.1 has an opaque “entity tag” (could be a file signature,

etc.) as well

* When/how often should the original be checked for

changes?
* Check every time?

» Check each session? Day? Etc?

» Use Expires header

« If no Expires, often use Last-Modified as estimate

28

14

Problems

"«

* Why?
* Major exception?
This problem will not go away

Fraction of HTTP objects that are cacheable is dropping

» Dynamic data - stock prices, scores, web cams
» CGl scripts = results based on passed parameters

Other less obvious examples

» SSL - encrypted data is not cacheable
* Most web clients don’t handle mixed pages well >many generic

objects transferred with SSL

» Cookies - results may be based on past data
» Hit metering = owner wants to measure # of hits for revenue, etc.

What will be the end result?

29

Cookies: Keeping “state”

"«

Many major Web sites use
cookies

Four components: Example:

1) Cookie header line in the
HTTP response message

2) Cookie header line in HTTP
request message

3) Cookie file kept on user’s
host and managed by user’s
browser

4) Back-end database at Web
site

Susan accesses Internet
always from the same PC

She visits a specific e-
commerce site for the first time
When initial HTTP requests
arrives at the site, the site
creates a unique ID and creates
an entry in a backend database
for that ID

30

15

Cookies: Keeping “State”

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

Cookie file

amazon: 1678
ebay: 8734

client

"«

Amazon server

=

usual http request msg

server

p—

usual http response +
Set-cookie: 1678

— creates ID
1678 for user

pa—

usual http request msg
cookie: 1678

cookie-
specific

~——

J usual http response msg (action

usual http request msg
cookie: 1678

cookie-

—

specific

J usual http response msg

action

U

% .
)
D506

31

%,
e
)
o

Overview Content Delivery

* Web

* Protocol interactions
e Caching
» Cookies

CDNs
Video

Peer-to-peer

32

16

Overview Content Delivery

"«

« Web

* Protocol interactions
» Caching

e Cookies
Peer-to-peer

CDNs

Video

33

17

