
1

15-441 Computer Networking

TCP Performance and the Web
Peter Steenkiste

Fall 2015
www.cs.cmu.edu/~prs/15-441-F15

15-441
15-641

Outline TCP

• TCP status and evolution (last week)

• TCP performance model (today)

• Throughput model

• Implications

2

2

3

TCP Modeling

• Given the congestion behavior of TCP can we predict what
type of performance we should get?

• What are the important factors

• Loss rate: Affects how often window is reduced

• RTT: Affects increase rate and relates BW to window

• RTO: Affects performance during loss recovery

• MSS: Affects increase rate (additive increase)

4

Overall TCP Behavior

Time

Window

• Let us concentrate on steady state behavior with
no timeouts and perfect loss recovery

• Packets transferred = area under curve
• It is a simple geometry problem!

3

5

Transmission Rate

• What is area under curve?
• Window in packets
• Time in RTTs
• A = avg window * time

= ¾ W * T (packets)

• What was bandwidth?
• BW = A / T = ¾ W

• In packets per RTT

• Convert to bytes per second
• BW = ¾ W * MSS / RTT

• What is W?
• Depends on loss rate

Time

W

W/2

Window

T

6

Simple TCP Model

• Some additional assumptions
• Fixed RTT
• No delayed ACKs

• In steady state, TCP loses a packet each time window
reaches W packets
• Window drops to W/2 packets
• Each RTT window increases by 1 packet
W/2 * RTT between packet losses

4

7

Simple Loss Model

• What was the loss rate?
• Packets transferred = (¾ W/RTT) * (W/2 * RTT) = 3W2/8

• 1 packet lost  loss rate = p = 8/3W2

•

• BW = ¾ * W * MSS / RTT

•

•

3
2 pRTT

MSS
BW




p
W

3

8


pp
W

2

3

3

4

3

8


8

Implication 1: Fairness

• Flows sharing bottleneck do NOT get same bandwidth!

• Fairness: BW proportional to 1/RTT

• TCP is “RTT fair”

• Only “if all else is equal” do flows sharing a bottleneck
get the same bandwidth

• Not by design

5

Implication 2: High Speed Networks

9

10

TCP over High-Speed Networks

Packet loss

Time (RTT)Congestion avoidance

Packet loss Packet loss

cwnd

Slow start

Packet loss

 A TCP connection with 1250-Byte packet size and 100ms RTT is running
over a 10Gbps link (assuming no other connections, and no buffers at
routers)

100,000 10Gbps

50,000 5Gbps

1.4 hours 1.4 hours 1.4 hours

TCP

Source: Rhee, Xu. “Congestion Control on High-Speed Networks”

6

TCP (CU)BIC

• Goal is to spend more time at the high end of the window
value range

• Remember: 1.4 hours to reach Wmax on 10 Gbs link?

• Idea: make the additive increase adaptive depending on
how close you are to presumed Wmax value

• Fast recovery using larger additive increase toward
Wmax

• Slow change around Wmax

• Fast search for a higher Wmax

11

TCP CUBIC in one slide

12

7

13

Implication 3:
How about non-TCP flow?

• Certain types of flow cannot use TCP
• E.g., multi-media streaming: timeouts add excessive delays,

reducing “Quality of Experience”

• Require custom transport, but what congestion control?

• Solution TCP: make them “TCP friendly”
• “Like TCP but smoother”

• Motivation is that they need to coexist nicely with TCP

• Should hold their own without clobbering TCP flows

• Their throughput must follow that of the TCP equation
• Calculated smoothed estimates of RTT, p, …

• Do TCP-Friendly Rate Control (TFRC) based on TCP equation

• Adjust rate w/o timeouts

Overview Content Delivery

• Web

• Protocol interactions

• Caching

• Cookies

• Peer-to-peer

• CDNs

• Video

14

8

15

Web history

• 1945: Vannevar Bush, “As we may think”, Atlantic
Monthly, July, 1945.
• Describes the idea of a distributed hypertext system.

• A “memex” that mimics the “web of trails” in our minds.

• 1989: Tim Berners-Lee (CERN) writes internal proposal
to develop a distributed hypertext system
• Connects “a web of notes with links”.

• Intended to help CERN physicists in large projects share and
manage information

• 1990: TBL writes graphical browser for Next machines

• 1992-1994: NCSA/Mosaic/Netscape browser release

16

Internet Traffic History

0.001

0.01

0.1

1

10

100

1000

10000

100000

P
B

yt
e/

m
o

n
th

Year

All

Fixed

Mobile

9

17

Typical Workload (Web Pages)

• Multiple (typically small) objects per page

• File sizes

• Heavy-tailed
• Pareto distribution for tail

• Lognormal for body of distribution

• Embedded references

• Number of embedded objects also Pareto
Pr(X>x) = (x/xm)-k

• This plays havoc with performance. Why?

• Solutions?

•Lots of small objects
versus TCP
• 3-way handshake
• Lots of slow starts
• Extra connection state

HTTP 0.9/1.0

• One request/response per TCP connection
• Simple to implement

• Short transfers are very hard on TCP

• Multiple connection setups  three-way handshake
each time
• Several extra round trips added to transfer

• Many slow starts – low throughput because of small
window
• Never leave slow start for short transfers

• Loss recovery is poor when windows are small
• Lots of extra connections

• Increases server state/processing

18

10

Single Transfer Example

Client Server
SYN

SYN

SYN

SYN

ACK

ACK

ACK

ACK

ACK

DAT

DAT

DAT

DAT

FIN

ACK

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Server reads from
disk

FIN

Server reads from
disk

Client opens TCP
connection

Client sends HTTP request
for HTML

Client parses HTML
Client opens TCP
connection

Client sends HTTP request
for image

Image begins to arrive

19

HTTP 1.1

• Multiplex multiple transfers onto one TCP connection
• Avoid handshake and slow start when getting multiple objects from

same server

• Transfers can be pipelined, i.e., multiple outstanding
requests
• Requests are handled in FIFO order by server

• How to identify requests/responses?
• Delimiter  Server must examine response for delimiter string
• Content-length and delimiter  Must know size of transfer in

advance
• Block-based transmission  send in multiple length delimited

blocks
• Store-and-forward  wait for entire response and then use

content-length

20

11

Persistent Connection Solution

Client

Server

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server reads from
disk

Client sends HTTP request
for HTML index page

Client parses HTML
Client sends HTTP request
for image

Image begins to arrive

DAT
Server reads from
disk

DAT

21

Some Challenges with HTTP 1.1

• Head of line blocking: “slow” objects can delay all requests
that follow

• E.g., objects from disk versus objects in cache

• Browsers open multiple TCP connections to achieve
parallel transfers

• Increases load on servers and network

• HTTP headers are big

• Cost higher for small objects

• Embedded objects add RTT

• With small objects, RTT dominates

22

12

HTTP 2.0 to the Rescue

• Can multiplex many requests over a TCP connection AND

• Responses are carried over flow controlled streams –
avoids HOL blocking

• Streams can be prioritized by client based on how
critical they are to rendering

• HTTP headers are compressed

• A PUSH features allows server to push embedded objects
to the client without waiting for a client request

• Avoids an RTT

• What is the challenge?

• Default is to use TLS – fall back on 1.1 otherwise

23

24

Web Proxy Caches

• User configures browser: Web
accesses via cache

• Browser sends all HTTP
requests to cache

• Object in cache: cache
returns object

• Else cache requests object
from origin server, then
returns object to client

client

Proxy
server

client
origin
server

origin
server

13

25

No Caching Example (1)

Assumptions

• Average object size = 100,000 bits

• Avg. request rate from institution’s
browser to origin servers = 15/sec

• Delay from institutional router to
any origin server and back to router
= 2 sec

Consequences
• Utilization on LAN = 15%

• Utilization on access link = 100%

• Total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

26

No Caching Example (2)

Possible solution

• Increase bandwidth of access link
to, say, 10 Mbps

• Often a costly upgrade

Consequences
• Utilization on LAN = 15%

• Utilization on access link = 15%

• Total delay = Internet delay + access
delay + LAN delay

= 2 sec + msecs + msecs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

14

27

With Caching Example (3)

Install cache
• Suppose hit rate is .4

Consequence
• 40% requests will be satisfied almost

immediately (say 10 msec)

• 60% requests satisfied by origin server

• Utilization of access link reduced to 60%,
resulting in negligible delays

• Weighted average of delays

= .6*2 sec + .4*10msecs < 1.3 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

28

HTTP Caching

• Clients often cache documents
• Challenge: update of documents
• If-Modified-Since requests to check

• HTTP 0.9/1.0 used just date
• HTTP 1.1 has an opaque “entity tag” (could be a file signature,

etc.) as well

• When/how often should the original be checked for
changes?
• Check every time?
• Check each session? Day? Etc?
• Use Expires header

• If no Expires, often use Last-Modified as estimate

15

29

Problems

• Fraction of HTTP objects that are cacheable is dropping
• Why?
• Major exception?

• This problem will not go away
• Dynamic data  stock prices, scores, web cams
• CGI scripts  results based on passed parameters

• Other less obvious examples
• SSL  encrypted data is not cacheable

• Most web clients don’t handle mixed pages well many generic
objects transferred with SSL

• Cookies  results may be based on past data
• Hit metering  owner wants to measure # of hits for revenue, etc.

• What will be the end result?

Cookies: Keeping “state”

Many major Web sites use
cookies

Four components:
1) Cookie header line in the

HTTP response message

2) Cookie header line in HTTP
request message

3) Cookie file kept on user’s
host and managed by user’s
browser

4) Back-end database at Web
site

Example:
• Susan accesses Internet

always from the same PC

• She visits a specific e-
commerce site for the first time

• When initial HTTP requests
arrives at the site, the site
creates a unique ID and creates
an entry in a backend database
for that ID

30

16

Cookies: Keeping “State”

client Amazon server

usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
specific
action

server
creates ID

1678 for user

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

31

Overview Content Delivery

• Web

• Protocol interactions

• Caching

• Cookies

• Peer-to-peer

• CDNs

• Video

32

17

Overview Content Delivery

• Web

• Protocol interactions

• Caching

• Cookies

• Peer-to-peer

• CDNs

• Video

33

