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Overview Content Delivery i‘

« Web
* Protocol interactions
e HTTP versions
» Caching
» Cookies
» Peer-to-peer
* CDNs
* Video

Web history “

+ 1945: Vannevar Bush, “As we may think”, Atlantic
Monthly, July, 1945.
» Describes the idea of a distributed hypertext system
* A “memex” that mimics the “web of trails” in our minds
+ 1989: Tim Berners-Lee (CERN) writes internal proposal
to develop a distributed hypertext system
» Connects “a web of notes with links”.
* Intended to help CERN physicists in large projects share and
manage information
+ 1990: TBL writes graphical browser for Next machines

* 1992-1994: NCSA/Mosaic/Netscape browser release

Internet Traffic History “

100000

10000 Al

= Fixed
1000
Mobile

100

PByte/month

Year




Typical Workload (Web Pages)

«

 Multiple (typically small) objects per page
* File sizes

* Heavy-tailed
« Pareto distribution for tail

versus TCP

«Lots of small objects

« 3-way handshake

« Lognormal for body of distribution « Lots of slow starts

« Embedded references
* Number of embedded objects also Pareto
Pr(X>x) = (x/X,)*
* This plays havoc with performance. Why?
* Solutions?

» Extra connection state

HTTP 0.9/1.0 N

* One request/response per TCP connection
+ Simple to implement
» Short transfers are very hard on TCP
* Multiple connection setups - three-way handshake
each time
 Several extra round trips added to transfer
+ Many slow starts — low throughput because of small
window
» Never leave slow start for short transfers
* Loss recovery is poor when windows are small
* Lots of extra connections increase server state and
processing overhead

Single Transfer Example
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l Server reads from
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3RTT
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4 RTT

Image begins to arrive

HTTP 1.1 N

* Multiplex multiple transfers onto one TCP connection
+ Avoid handshake and slow start when getting multiple objects from
same server
« Transfers can be pipelined, i.e., multiple outstanding
requests
* Requests are handled in FIFO order by server
* How to identify requests/responses?
» Delimiter > Server must examine response for delimiter string
+ Content-length and delimiter > Must know size of transfer in
advance
+ Block-based transmission = send in multiple length delimited
blocks
+ Store-and-forward - wait for entire response and then use
content-length




Persistent Connection Solution

«

for image

Client parses HTML
Client sends HTTP request ACK
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N

Some Challenges with HTTP 1.1

* Head of line blocking: “slow” objects can delay all requests
that follow

» E.g., objects from disk versus objects in cache
» Single “slow” object can delay many “fast” objects

* Browsers open multiple TCP connections to achieve
parallel transfers

* Increases load on servers and network
* HTTP headers are big

 Cost higher for small objects
* Embedded objects add RTT

» With small objects, RTT dominates

Example of Head of Line Blocking
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HTTP 2.0 to the Rescue

« Can multiplex many requests over a TCP connection AND

* Responses are carried over flow controlled streams — avoids HOL
blocking

« Streams can be prioritized by client based on how critical they are
to rendering

« = multiple prioritized parallel TCP streams

» Also: fewer handshakes and more traffic (help congestion control)
HTTP headers are compressed
A PUSH features allows server to push embedded objects
to the client without waiting for a client request

¢ Avoids an RTT

* Whatis the challenge?
» Default is to use TLS — fall back on 1.1 otherwise




HTTP/2 Multi-Streams Multiplexing

«

HTTP/2 connection

- .| stream1 [ stream3 | stream3 | stream 1 . -
DATA | HEADERS DATA DATA <
stream5 | ] ﬁ
4 DATA =)
Client Server
Bit | +0..7 [ +8..15 +16..23 +24..31
o Length Type
32 | Flags
40 R | Stream Identifier
Frame Payload

HTTP/2 Binary Framing

https://tools.ietf.org/html/rfc7540

14

Web Proxy Caches

L\

» User configures browser: Web
accesses via cache
* Browser sends all HTTP
requests to cache
* Object in cache: cache
returns object
« Else cache requests object|
from origin server, then
returns object to client

client

origin
server

origin
server

N

=

HTTP/2 Server Push
HTTP/2 connection
stream 4 stream1 | stream4 | stream2 | #
DA | HEADERS | PUSH PROMISE | PUSH PROMISE
stream 1
DATA

stream 1
HEADERS stream 1: /page.html (client request)

stream 2: /script.js (push promise)
stream 4: /style.css (push promise)
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No Caching Example (1)

"N

Assumptions

» Average object size = 100,000 bits

* Avg. request rate from institution’s
browser to origin servers = 15/sec

+ Delay from institutional router to
any origin server and back to router
=2sec

Consequences

» Utilization on LAN = 15%
Utilization on access link = 100%

* Totaldelay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + milliseconds

@ origin
@\ T @ servers
public
Internet _@

1.5 Mbps
access link

institutional

petvork 10 Mbps LAN




No Caching Example (2) i‘.

Possible solution
+ Increase bandwidth of access link origin

to, say, 10 Mbps @ servers
« Often a costly upgrade @\

public
Internet _@
Consequences
« Utilization on LAN = 15%
« Utilization on access link = 15%
« Total delay = Internet delay + access
delay + LAN delay
= 2 sec + msecs + msecs institutional
network

10 Mbps
access link

10 Mbps LAN

With Caching Example (3) i‘

Install cache oriin
« Suppose hit rate is .4 @ 9
servers
Consequence @
*  40% requests will be satisfied almost public
immediately (say 10 msec) Internet -@

* 60% requests satisfied by origin server
Utilization of access link reduced to 60%,
resulting in negligible delays

+  Weighted average of delays 1.5 Mbps

= .6*2 sec + .4*10msecs < 1.3 secs access link
institutional

fatiofi 10 Mbps LAN

institutional
cache

HTTP Caching "N

» Clients often cache documents
» Challenge: update of documents

* If-Modified-Since requests to check
* HTTP 0.9/1.0 used just date

« HTTP 1.1 has an opaque “entity tag” (could be a file signature,
etc.) as well

* When/how often should the original be checked for
changes?
* Check every time?
» Check each session? Day? Etc?

» Use Expires header
« If no Expires, often use Last-Modified as estimate
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Problems i‘

» Fraction of HTTP objects that are cacheable is dropping
* Why?
+ Major exception?
* This problem will not go away
» Dynamic data - stock prices, scores, web cams
* CGl scripts = results based on passed parameters
» Other less obvious examples

+ SSL - encrypted data is not cacheable

* Most web clients don’t handle mixed pages well >many generic
objects transferred with SSL

+ Cookies > results may be based on past data
« Hit metering > owner wants to measure # of hits for revenue, etc.

* What will be the end result?

21




Cookies: Keeping “state”

«

Many major Web sites use
cookies

Four components:

1) Cookie header line in the
HTTP response message

2) Cookie header line in HTTP
request message

3) Cookie file kept on user’s
host and managed by user’s
browser

4) Back-end database at Web
site

Example:

« Susan accesses Internet
always from the same PC

» She visits a specific e-
commerce site for the first time
When initial HTTP requests
arrives at the site, the site
creates a unique ID and creates
an entry in a backend database
for that ID
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Cookies: Keeping “State”

client Amazon server

‘] usual http request msg

ebay: 8734

T

server

usual http response + [ creates ID

Set-cookie: 1678

ebay: 8734

N

one week later:

—

ebay: 8734

N

1678 for user

usual http request msg .
cookie: 1678 | cookie-
specific
usual http response msg ( action
usual http request msg .
S cookie-
cookie: 1678 I~ specific
usual http response msg action
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Overview Content Delivery

L\

- Web
» Protocol interactions
+ Caching
» Cookies

* Peer-to-peer

* CDNs

» Video
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Overview Content Delivery

« Web
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* Video
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