15-441 :
“. 15644 Computer Networking

Lecture 15: The Web
Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

Overview Content Delivery i‘

« Web
* Protocol interactions
e HTTP versions
» Caching
» Cookies
» Peer-to-peer
* CDNs
* Video

Web history “

+ 1945: Vannevar Bush, “As we may think”, Atlantic
Monthly, July, 1945.
» Describes the idea of a distributed hypertext system
* A “memex” that mimics the “web of trails” in our minds
+ 1989: Tim Berners-Lee (CERN) writes internal proposal
to develop a distributed hypertext system
» Connects “a web of notes with links”.
* Intended to help CERN physicists in large projects share and
manage information
+ 1990: TBL writes graphical browser for Next machines

* 1992-1994: NCSA/Mosaic/Netscape browser release

Internet Traffic History “

100000

10000 Al

= Fixed
1000
Mobile

100

PByte/month

Year

Typical Workload (Web Pages)

«

 Multiple (typically small) objects per page
* File sizes

* Heavy-tailed
« Pareto distribution for tail

versus TCP

«Lots of small objects

« 3-way handshake

« Lognormal for body of distribution « Lots of slow starts

« Embedded references
* Number of embedded objects also Pareto
Pr(X>x) = (x/X,)*
* This plays havoc with performance. Why?
* Solutions?

» Extra connection state

HTTP 0.9/1.0 N

* One request/response per TCP connection
+ Simple to implement
» Short transfers are very hard on TCP
* Multiple connection setups - three-way handshake
each time
 Several extra round trips added to transfer
+ Many slow starts — low throughput because of small
window
» Never leave slow start for short transfers
* Loss recovery is poor when windows are small
* Lots of extra connections increase server state and
processing overhead

Single Transfer Example

L\

l Server reads from
disk

l Server reads from
disk

Client Server

ORTT
Client opens TCP
connection 1RTT
Client sends HTTP request
for HTML

2RTT
Client parses HTML
Client opens TCP
connection

3RTT
Client sends HTTP request
for image

4 RTT

Image begins to arrive

HTTP 1.1 N

* Multiplex multiple transfers onto one TCP connection
+ Avoid handshake and slow start when getting multiple objects from
same server
« Transfers can be pipelined, i.e., multiple outstanding
requests
* Requests are handled in FIFO order by server
* How to identify requests/responses?
» Delimiter > Server must examine response for delimiter string
+ Content-length and delimiter > Must know size of transfer in
advance
+ Block-based transmission = send in multiple length delimited
blocks
+ Store-and-forward - wait for entire response and then use
content-length

Persistent Connection Solution

«

for image

Client parses HTML
Client sends HTTP request ACK

2RTT /

Image begins to arrive

ORTT

Client sends HTTP request ACK
for HTML index page

1RTT
!

l Server reads from

l Server reads from

N

Some Challenges with HTTP 1.1

* Head of line blocking: “slow” objects can delay all requests
that follow

» E.g., objects from disk versus objects in cache
» Single “slow” object can delay many “fast” objects

* Browsers open multiple TCP connections to achieve
parallel transfers

* Increases load on servers and network
* HTTP headers are big

 Cost higher for small objects
* Embedded objects add RTT

» With small objects, RTT dominates

Example of Head of Line Blocking

SYN

]

Client Sel

S

rver

¥

ACK

28ms

\>

0ms

P——

GET /html|
GET /css

84ms

124ms

\‘

56ms

o)

server processing: 40 ms Ll D
ey

P—

close connection }

152ms

Source: http://chimera.labs.oreilly.com/books/1230000000545/ch11.html

su g ddL

sur96 d11H

Other objects
could have
been sent
12

"N

HTTP 2.0 to the Rescue

« Can multiplex many requests over a TCP connection AND

* Responses are carried over flow controlled streams — avoids HOL
blocking

« Streams can be prioritized by client based on how critical they are
to rendering

« = multiple prioritized parallel TCP streams

» Also: fewer handshakes and more traffic (help congestion control)
HTTP headers are compressed
A PUSH features allows server to push embedded objects
to the client without waiting for a client request

¢ Avoids an RTT

* Whatis the challenge?
» Default is to use TLS — fall back on 1.1 otherwise

HTTP/2 Multi-Streams Multiplexing

«

HTTP/2 connection

- .| stream1 [stream3 | stream3 | stream 1 . -
DATA | HEADERS DATA DATA <
stream5 |] ﬁ
4 DATA =)
Client Server
Bit | +0..7 [+8..15 +16..23 +24..31
o Length Type
32 | Flags
40 R | Stream Identifier
Frame Payload

HTTP/2 Binary Framing

https://tools.ietf.org/html/rfc7540

14

Web Proxy Caches

L\

» User configures browser: Web
accesses via cache
* Browser sends all HTTP
requests to cache
* Object in cache: cache
returns object
« Else cache requests object|
from origin server, then
returns object to client

client

origin
server

origin
server

N

=

HTTP/2 Server Push
HTTP/2 connection
stream 4 stream1 | stream4 | stream2 | #
DA | HEADERS | PUSH PROMISE | PUSH PROMISE
stream 1
DATA

stream 1
HEADERS stream 1: /page.html (client request)

stream 2: /script.js (push promise)
stream 4: /style.css (push promise)

15

No Caching Example (1)

"N

Assumptions

» Average object size = 100,000 bits

* Avg. request rate from institution’s
browser to origin servers = 15/sec

+ Delay from institutional router to
any origin server and back to router
=2sec

Consequences

» Utilization on LAN = 15%
Utilization on access link = 100%

* Totaldelay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + milliseconds

@ origin
@\ T @ servers
public
Internet _@

1.5 Mbps
access link

institutional

petvork 10 Mbps LAN

No Caching Example (2) i‘.

Possible solution
+ Increase bandwidth of access link origin

to, say, 10 Mbps @ servers
« Often a costly upgrade @\

public
Internet _@
Consequences
« Utilization on LAN = 15%
« Utilization on access link = 15%
« Total delay = Internet delay + access
delay + LAN delay
= 2 sec + msecs + msecs institutional
network

10 Mbps
access link

10 Mbps LAN

With Caching Example (3) i‘

Install cache oriin
« Suppose hit rate is .4 @ 9
servers
Consequence @
* 40% requests will be satisfied almost public
immediately (say 10 msec) Internet -@

* 60% requests satisfied by origin server
Utilization of access link reduced to 60%,
resulting in negligible delays

+ Weighted average of delays 1.5 Mbps

= .6*2 sec + .4*10msecs < 1.3 secs access link
institutional

fatiofi 10 Mbps LAN

institutional
cache

HTTP Caching "N

» Clients often cache documents
» Challenge: update of documents

* If-Modified-Since requests to check
* HTTP 0.9/1.0 used just date

« HTTP 1.1 has an opaque “entity tag” (could be a file signature,
etc.) as well

* When/how often should the original be checked for
changes?
* Check every time?
» Check each session? Day? Etc?

» Use Expires header
« If no Expires, often use Last-Modified as estimate

20

Problems i‘

» Fraction of HTTP objects that are cacheable is dropping
* Why?
+ Major exception?
* This problem will not go away
» Dynamic data - stock prices, scores, web cams
* CGl scripts = results based on passed parameters
» Other less obvious examples

+ SSL - encrypted data is not cacheable

* Most web clients don’t handle mixed pages well >many generic
objects transferred with SSL

+ Cookies > results may be based on past data
« Hit metering > owner wants to measure # of hits for revenue, etc.

* What will be the end result?

21

Cookies: Keeping “state”

«

Many major Web sites use
cookies

Four components:

1) Cookie header line in the
HTTP response message

2) Cookie header line in HTTP
request message

3) Cookie file kept on user’s
host and managed by user’s
browser

4) Back-end database at Web
site

Example:

« Susan accesses Internet
always from the same PC

» She visits a specific e-
commerce site for the first time
When initial HTTP requests
arrives at the site, the site
creates a unique ID and creates
an entry in a backend database
for that ID

22

Cookies: Keeping “State”

client Amazon server

‘] usual http request msg

ebay: 8734

T

server

usual http response + [creates ID

Set-cookie: 1678

ebay: 8734

N

one week later:

—

ebay: 8734

N

1678 for user

usual http request msg .
cookie: 1678 | cookie-
specific
usual http response msg (action
usual http request msg .
S cookie-
cookie: 1678 I~ specific
usual http response msg action

23

Overview Content Delivery

L\

- Web
» Protocol interactions
+ Caching
» Cookies

* Peer-to-peer

* CDNs

» Video

24

Overview Content Delivery

« Web

* Protocol interactions

+ Caching
» Cookies
* Peer-to-peer
* CDNs
* Video

25

