
1

15-441 Computer Networking

Lecture 15: The Web
Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

15-441
15-641

Overview Content Delivery

• Web
• Protocol interactions
• HTTP versions
• Caching
• Cookies

• Peer-to-peer
• CDNs
• Video

3

4

Web history

• 1945: Vannevar Bush, “As we may think”, Atlantic
Monthly, July, 1945.
• Describes the idea of a distributed hypertext system
• A “memex” that mimics the “web of trails” in our minds

• 1989: Tim Berners-Lee (CERN) writes internal proposal
to develop a distributed hypertext system
• Connects “a web of notes with links”.
• Intended to help CERN physicists in large projects share and

manage information

• 1990: TBL writes graphical browser for Next machines
• 1992-1994: NCSA/Mosaic/Netscape browser release

5

Internet Traffic History

0.001

0.01

0.1

1

10

100

1000

10000

100000

PB
yt

e/
m

on
th

Year

All

Fixed

Mobile

2

6

Typical Workload (Web Pages)

• Multiple (typically small) objects per page
• File sizes

• Heavy-tailed
• Pareto distribution for tail
• Lognormal for body of distribution

• Embedded references
• Number of embedded objects also Pareto

Pr(X>x) = (x/xm)-k

• This plays havoc with performance. Why?
• Solutions?

•Lots of small objects
versus TCP
• 3-way handshake
• Lots of slow starts
• Extra connection state

HTTP 0.9/1.0

• One request/response per TCP connection
• Simple to implement

• Short transfers are very hard on TCP
• Multiple connection setups  three-way handshake

each time
• Several extra round trips added to transfer

• Many slow starts – low throughput because of small
window
• Never leave slow start for short transfers

• Loss recovery is poor when windows are small
• Lots of extra connections increase server state and

processing overhead

7

Single Transfer Example

Client Server
SYN

SYN

SYN

SYN

ACK

ACK

ACK

ACK

ACK

DAT

DAT

DAT

DAT

FIN

ACK

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Server reads from
disk

FIN

Server reads from
disk

Client opens TCP
connection
Client sends HTTP request
for HTML

Client parses HTML
Client opens TCP
connection

Client sends HTTP request
for image

Image begins to arrive

8

HTTP 1.1

• Multiplex multiple transfers onto one TCP connection
• Avoid handshake and slow start when getting multiple objects from

same server
• Transfers can be pipelined, i.e., multiple outstanding

requests
• Requests are handled in FIFO order by server

• How to identify requests/responses?
• Delimiter  Server must examine response for delimiter string
• Content-length and delimiter  Must know size of transfer in

advance
• Block-based transmission  send in multiple length delimited

blocks
• Store-and-forward  wait for entire response and then use

content-length

9

3

Persistent Connection Solution

Client

Server

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server reads from
disk

Client sends HTTP request
for HTML index page

Client parses HTML
Client sends HTTP request
for image

Image begins to arrive

DAT
Server reads from
disk

DAT

10

Some Challenges with HTTP 1.1

• Head of line blocking: “slow” objects can delay all requests
that follow
• E.g., objects from disk versus objects in cache
• Single “slow” object can delay many “fast” objects

• Browsers open multiple TCP connections to achieve
parallel transfers
• Increases load on servers and network

• HTTP headers are big
• Cost higher for small objects

• Embedded objects add RTT
• With small objects, RTT dominates

11

Example of Head of Line Blocking

12Source: http://chimera.labs.oreilly.com/books/1230000000545/ch11.html

Other objects
could have
been sent

HTTP 2.0 to the Rescue

• Can multiplex many requests over a TCP connection AND
• Responses are carried over flow controlled streams – avoids HOL

blocking
• Streams can be prioritized by client based on how critical they are

to rendering
• ≈ multiple prioritized parallel TCP streams
• Also: fewer handshakes and more traffic (help congestion control)

• HTTP headers are compressed
• A PUSH features allows server to push embedded objects

to the client without waiting for a client request
• Avoids an RTT
• What is the challenge?

• Default is to use TLS – fall back on 1.1 otherwise
13

4

14

HTTP/2 Multi-Streams Multiplexing

https://tools.ietf.org/html/rfc7540

HTTP/2 Binary Framing

15

HTTP/2 Server Push

16

Web Proxy Caches

• User configures browser: Web
accesses via cache

• Browser sends all HTTP
requests to cache
• Object in cache: cache

returns object
• Else cache requests object

from origin server, then
returns object to client

client

Proxy
server

client
origin
server

origin
server

17

No Caching Example (1)

Assumptions
• Average object size = 100,000 bits
• Avg. request rate from institution’s

browser to origin servers = 15/sec
• Delay from institutional router to

any origin server and back to router
= 2 sec

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 100%
• Total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

5

18

No Caching Example (2)

Possible solution
• Increase bandwidth of access link

to, say, 10 Mbps
• Often a costly upgrade

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 15%
• Total delay = Internet delay + access

delay + LAN delay
= 2 sec + msecs + msecs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

19

With Caching Example (3)

Install cache
• Suppose hit rate is .4
Consequence
• 40% requests will be satisfied almost

immediately (say 10 msec)
• 60% requests satisfied by origin server
• Utilization of access link reduced to 60%,

resulting in negligible delays
• Weighted average of delays

= .6*2 sec + .4*10msecs < 1.3 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

20

HTTP Caching

• Clients often cache documents
• Challenge: update of documents
• If-Modified-Since requests to check

• HTTP 0.9/1.0 used just date
• HTTP 1.1 has an opaque “entity tag” (could be a file signature,

etc.) as well
• When/how often should the original be checked for

changes?
• Check every time?
• Check each session? Day? Etc?
• Use Expires header

• If no Expires, often use Last-Modified as estimate

21

Problems

• Fraction of HTTP objects that are cacheable is dropping
• Why?
• Major exception?

• This problem will not go away
• Dynamic data  stock prices, scores, web cams
• CGI scripts  results based on passed parameters

• Other less obvious examples
• SSL  encrypted data is not cacheable

• Most web clients don’t handle mixed pages well many generic
objects transferred with SSL

• Cookies  results may be based on past data
• Hit metering  owner wants to measure # of hits for revenue, etc.

• What will be the end result?

6

Cookies: Keeping “state”

Many major Web sites use
cookies

Four components:
1) Cookie header line in the

HTTP response message
2) Cookie header line in HTTP

request message
3) Cookie file kept on user’s

host and managed by user’s
browser

4) Back-end database at Web
site

Example:
• Susan accesses Internet

always from the same PC
• She visits a specific e-

commerce site for the first time
• When initial HTTP requests

arrives at the site, the site
creates a unique ID and creates
an entry in a backend database
for that ID

22

Cookies: Keeping “State”

client Amazon server
usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
specific
action

server
creates ID

1678 for user

Cookie file
amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file
amazon: 1678
ebay: 8734

one week later:

23

Overview Content Delivery

• Web
• Protocol interactions
• Caching
• Cookies

• Peer-to-peer
• CDNs
• Video

24

Overview Content Delivery

• Web
• Protocol interactions
• Caching
• Cookies

• Peer-to-peer
• CDNs
• Video

25

