
1

15-441 Computer Networking

Lecture 14: TCP Performance & Future
Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

15-441
15-641

TCP so far

• Reliable byte stream protocol
• Connection establishments and tear down

• Maintain state at end points to optimize performance
• Flow control to avoid flooding receiver

• Based on sliding window to overcome RTT
• Error control to recover from lost packets

• Cover up errors by best effort IP service
• Congestion control to avoid flooding the network

• Protect the network – avoid congestion collapse

2

Outline

• Evolution of TCP
• Error and flow control
• Random early detection
• Explicit congestion notification
• Window scaling

• TCP performance

3

How Was TCP Able to Evolve

• Change endpoint behavior only
• Fast retransmit, congestion control (implicit feedback)

• Use options to add information to the header
• SACK – awkward but worth it; affects end point only
• Example: window scaling
• Timestamp option

• Change the header!
• Not very common
• Example: Explicit Congestion Notification

4

2

Error Control Has Evolved

• Original error control based on cumulative ACKs
Go-Back-N
• But only retransmit one packet to avoid wasting

bandwidth
• Added fast retransmit - ~NACK

• Try to avoid expensive timeout on packet loss
• Not effective for burst errors, small windows

• Selective ACK to avoid timeouts when using large
windows
• Multiple losses per window more common

5

Congestion Control also Evolved

• Original TCP did not have congestion control
• Resulted in inefficiencies, congestion collapse
• The price you pay for being successful!

• Congestion control based on implicit feedback
• Binary: packet loss = congestion, no packet loss = OK
• AIMD adaptation by sender – motivated by fairness

• Clever and scalable, but …
• Routers need to drop packets to slow down sender
• Packet drops can also synchronize TCP senders

• Can we do better? Explicit feedback?

6

Random Early Detection
(RED)

• Start randomly dropping packets
before queue is full.

• Some flows will observe a single
packet loss and slow down,
hopefully avoiding queue overflow

• High bandwidth users are more likely
to have a packet dropped than low
bandwidth users

• Queue can still accommodate bursts
of packets

• Improves overall network
performance by avoiding that
queues stay full.

• Congestion avoidance
• How do you set the thresholds?

Averaged
Queue size

P

0

1

Explicit Congestion Notification
(ECN)

• The goal is to provide
explicit congestion
notification to senders
• Complements the implicit

feedback through packet drops
• Bits 6-7 of the TOS bit

form the ECN field
• The ECN-Capable Transport

(ECT) bit is set by the sender to
indicate that the end-points are
ECN-capable

• The Congestion Experience
(CE) bit is set by the router to
signal congestion

• Reinterpreting bits in header a
major obstacle to deployment!!!

• ECN is received by receiver, but needed by sender – How?
• ECN bit is carried to sender in the TCP header (flags field)

V/HL TOS Length
ID Flags/Offset

TTL Prot. H. Checksum
Source IP address

Destination IP address
Options..

DSCP ECT
/CE

3

9

Evolution of Flow Control:
Large Windows

• Delay-bandwidth product for 100ms delay
• 1.5Mbps: 18KB
• 10Mbps: 122KB
• 45Mbps: 549KB
• 100Mbps: 1.2MB
• 622Mbps: 7.4MB
• 1.2Gbps: 14.8MB

• Why is this a problem?
• 10Mbps > max 16bit window

• Scaling factor on advertised window
• Specifies how many bits window must be shifted to the left
• Scaling factor exchanged during connection setup

10

Window Scaling:
Example Use of Options
• “Large window” option (RFC

1323)
• Negotiated by the hosts during

connection establishment
• Option 3 specifies the number

of bits by which to shift the
value in the 16 bit window field

• Independently set for the two
transmit directions

• The scaling factor specifies bit
shift of the window field in the
TCP header
• Scaling value of 2 translates

into a factor of 4
• Old TCP implementations will

simply ignore the option
• Definition of an option

TCP syn

SW? 3

TCP syn,ack

SW yes 3
SW? 2

TCP ack

SW yes 2

And Now for the Really Messy Bits

• TCP uses delayed ACK: acks every other packet
• Kind of messy interferes with: congestion control, fast retransmit

(no delay), slow start, ….

• Nagle’s algorithm avoids sending many small packets
• Allow only one outstanding small (not full sized) segment that has

not yet been acknowledged
• Can be disabled for interactive applications (e.g., telnet)

• Silly window syndrom
• If receiver advertises small increases in the receive window then

the sender may waste time sending lots of small packets
• Solution: don’t do it – receiver tries to wait for one MSS

• Unusual circumstances: keep alive, RESET, …

11

The TCP Reality

• Most file transfers are very small (mice)
• TCP never reaches steady state – slow start dominates
• Fast retransmit often fails – very bad for latency

• But there are long flows as well! (elephants)
• Next

• “TCP-fairness” is calculated on a per flow basis
• Many browsers open parallel TCP sessions, oops
• Other ways to cheat: what is your initial window?

• TLS is widely used – adds 1-2 RTT handshake
• Starts after the TCP handshake!

4

Outline

• Evolution of TCP
• Error and flow control
• Random early detection
• Explicit congestion notification
• Window scaling

• TCP performance

13 14

TCP Modeling

• Given the congestion behavior of TCP can we
predict what type of performance we should get?
• Assume no timeouts and perfect error recovery

• What are the important factors
• Loss rate: Affects how often window is reduced
• RTT: Affects increase rate and relates BW to window
• MSS: Affects increase rate (additive increase)

• Result:

3
2 pRTT

MSSBW

15

Implication 1: Fairness

• Flows sharing bottleneck do NOT get same
bandwidth!
• Fairness: BW proportional to 1/RTT

• TCP is “RTT fair”
• Only “if all else is equal” do flows sharing a bottleneck

get the same bandwidth
• Not by design

Implication 2: High Speed Networks

16

5

17

TCP over High-Speed Networks

Packet loss

Time (RTT)Congestion avoidance

Packet loss Packet loss
cwnd

Slow start

Packet loss

 A TCP connection with 1250-Byte packet size and 100ms RTT is running
over a 10Gbps link (assuming no other connections, and no buffers at
routers)

100,000 10Gbps

50,000 5Gbps

1.4 hours 1.4 hours 1.4 hours

TCP

Source: Rhee, Xu. “Congestion Control on High-Speed Networks”

TCP (CU)BIC

• Goal is to spend more time at the high end of the
window value range
• Remember: 1.4 hours to reach Wmax on 10 Gbs link?

• Idea: make the additive increase adaptive
depending on how close you are to presumed
Wmax value
• Fast recovery using larger additive increase toward

Wmax (cubic increase)
• Slow change around Wmax
• Fast search for a higher Wmax

18

TCP CUBIC in one slide

19 20

Implication 3:
How about non-TCP flow?

• Certain types of flow cannot use TCP
• E.g., multi-media streaming: timeouts add excessive delays
• Require custom transport, but what congestion control?

• Solution TCP: make them “TCP friendly”
• “Like TCP but smoother”
• Motivation is that they need to coexist nicely with TCP
• Should hold their own without clobbering TCP flows

• Their throughput must follow the TCP equation
• Calculated smoothed estimates of RTT, p, …
• Do TCP-Friendly Rate Control (TFRC) based on TCP equation
• Can adjust the transmit rate without timeouts

6

Derivation of
Throughput Model

Optional Material

21 22

TCP Modeling

• Given the congestion behavior of TCP can we
predict what type of performance we should get?
• Assume no timeouts and perfect error recovery

• What are the important factors
• Loss rate: Affects how often window is reduced
• RTT: Affects increase rate and relates BW to window
• MSS: Affects increase rate (additive increase)

• Result:

3
2 pRTT

MSSBW

23

Overall TCP Behavior

Time

Window

• Let us concentrate on steady state behavior with
no timeouts and perfect loss recovery

• Packets transferred = area under curve
• It is a simple geometry problem!

24

Transmission Rate

• What is area under
curve?
• Window in packets
• Time in RTTs
• A = avg window * time

= ¾ W * T (packets)

• What was bandwidth?
• BW = A / T = ¾ W

• In packets per RTT
• Convert to bytes per second
• BW = ¾ W * MSS / RTT

• What is W?
• Depends on loss rate

Time

W

W/2

Window

T

7

25

Simple TCP Model

• Some additional assumptions
• Fixed RTT
• No delayed ACKs

• In steady state, TCP loses a packet each time
window reaches W packets
• Window drops to W/2 packets
• Each RTT window increases by 1 packet
W/2 * RTT between packet losses

26

Simple Loss Model

• What was the loss rate?
• Packets transferred = (¾ W/RTT) * (W/2 * RTT) = 3W2/8
• 1 packet lost loss rate = p = 8/3W2

•

• BW = ¾ * W * MSS / RTT

•

•
3

2 pRTT

MSSBW

p
W

3
8

pp
W

2
3

3
4

3
8

