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Congestion

• Many sources “share*” resources inside network
• Problem: demand can exceed capacity of the network

• Sources are unaware of current state of resource
• Sources are unaware of each other

• Manifestations:
• Lost packets (buffer overflow at routers)
• Long delays (queuing in router buffers)

• Challenge: 
How do we coordinate all nodes in the Internet?

10 Mbps

100 Mbps

1.5 Mbps

* Share  Compete for?

4

Causes & Costs of Congestion

• Four senders – multihop paths

• Timeout/retransmit

Q: What happens as rate     
increases?
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Causes & Costs of Congestion

• When packet dropped, any “upstream transmission 
capacity used for that packet was wasted!

max
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Congestion Collapse

• Definition: Increase in network load results in 
decrease of useful work done

• Many possible causes
• Spurious retransmissions of packets still in flight

• Classical congestion collapse

• How can this happen with packet conservation

• Solution: better timers and TCP congestion control

• Undelivered packets
• Packets consume resources and are dropped elsewhere in 

network

• Solution: congestion control for ALL traffic
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Plan for Today

• So far we considered two networks
• Network 1: 1 router, 3 links

• Network 2: 4 routers, 8 links

• Next step: how do we deal with congestion in the 
Internet
• Millions of routers

• Even more links

• 100s of millions of sources
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Congestion Control Goals

• A mechanism that:
• Uses network resources efficiently

• Prevents or avoids collapse

• Preserves fair network resource allocation

• Congestion collapse is not just a theory
• Has been frequently observed in many networks
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Two Approaches Towards 
Congestion Control

End-to-end congestion 
control:

• No explicit feedback from 
network

• End-systems infer 
congestion status from 
observed loss, delay, …

• Approach taken by TCP

• Problem: making it work
• Avoid significant packet loss

• Maintain high utilization

Network-assisted congestion 
control:
• Routers provide feedback 

to end systems
• Single bit indicating 

congestion (SNA, DECbit, 
TCP/IP ECN, ATM)

• Explicit rate sender should 
send at (ATM)

• Problem: makes routers 
more complicated
• Per-flow state → poor 

scalability
• Can sometimes be avoided
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Congestion Control with 
Binary Feedback (TCP)

• Very simple mechanisms in network
• FIFO scheduling with shared buffer pool

• Feedback through packet drops (or binary feedback)

• TCP interprets packet drops as signs of 
congestion and sender slows down

• This is an assumption: packet drops are not a sign of 
congestion in all networks, e.g., wireless networks

• Sender periodically probes the network to check 
whether more bandwidth has become available

• Key questions: how much to reduce (after a drop) 
and increase (when probing) rate
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Objectives

• Simple router behavior 

• Distributedness

• Efficiency: X = xi(t)

• Fairness: (xi)2/n(xi
2)

• What are the important properties of this function?

• Convergence: control system must be stable
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Linear Control

• Many different possibilities for reaction to 
congestion and probing
• Examine simple linear controls

• Window(t + 1) = a + b Window(t)
• Different ai/bi for increase and ad/bd for decrease

• Supports various reaction to signals
• Increase/decrease additively
• Increased/decrease multiplicatively
• Which of the four combinations is optimal?
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Phase Plots

• Simple way to 
visualize behavior 
of competing 
connections over 
time

• Sequence of 
steps with 2 
synchronized 
senders User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Phase Plots

• What are 
desirable 
properties?

• What if flows are 
not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
Optimal point

Overload

Underutilization
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Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

• Both X1 and X2

increase/ decrease 
by the same amount 
over time

• Additive increase 
improves fairness 
and additive 
decrease reduces 
fairness
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Muliplicative Increase/Decrease

• Both X1 and X2

increase by the 
same factor over 
time
• Extension along 

line through 
origin

• Constant fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Achieving Fairness AND Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation x2

a=0
b=1

a>0 & b<1

a<0 & b>1

a<0 & b<1

a>0 & b>1
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What is the Right Choice?

• Constraints limit 
us to AIMD
• Can have 

multiplicative 
term in increase
(MAIMD)

• AIMD moves 
towards optimal 
point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Outline

• Congestion control fundamentals

• TCP congestion control
• Implementing AIMD

• Packet pacing

• Fast recovery

• TCP slow start



11

21

TCP Congestion Control:
Implicit Feedback and AIMD

• Distributed, fair and efficient

• Packet loss is seen as sign of congestion and results in a 
multiplicative rate decrease: factor of 2

• TCP periodically probes for available bandwidth by 
increasing its rate: by one packet per RTT

Time

Rate

22

Implementation Issue

• Operating system timers are very coarse – how to pace 
packets out smoothly?

• Implemented using a congestion window that limits how 
much data can be in the network.
• Similar to using a flow control window to avoid flooding receiver

• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding 
data is less than the congestion window.
• The amount of outstanding data is increased on a “send” and 

decreased on “ack”

• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering
• Sender’s maximum window = Min (advertised window, cwnd)
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Packet Conservation

• At equilibrium, inject packet into network only 
when one is removed
• Controlled by sliding window, not rate 

• But still need to avoid sending burst of packets 
would overflow links
• Need to carefully pace out packets

• Helps provide stability 

• Need to eliminate spurious retransmissions
• Accurate RTO estimation

• Better loss recovery techniques (e.g. fast retransmit)
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• Congestion window helps to “pace” the transmission of 
data packets

• In steady state, a packet is sent when an ack is received
• Data transmission remains smooth, once it is smooth

• Self-clocking behavior

Pr

Pb

Ar
Ab

ReceiverSender

As

TCP Packet Pacing
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Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segments

• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by (1 packet)/cwnd

• What is 1 packet?  1 MSS worth of bytes

• After cwnd packets have passed by  approximately increase 
of 1 MSS

• Implements AIMD
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Congestion Avoidance Sequence Plot
Pacing and “AI”

Time

Sequence No

Packets

Acks

8

9

10
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Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ retransmit

Grabbing
back 

Bandwidth

Cut
Congestion

Window
and Rate
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Remember Fast Retransmit?

Time

Congestion
Window

Fast
Retransmit

Much 
Faster!

Fast 
Retransmit

Fails
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Fast Recovery

• With fast retransmit, TCP can often avoid timeout, 
but loss signals congestion → cut window in half

• Challenge: how do we maintain ack clocking?
• Observation: each duplicate ack notifies sender 

that a single packet has cleared the network
• When < new cwnd packets are outstanding

• Allow new packets out with each new duplicate 
acknowledgement

• Behavior
• Sender is idle for some time – waiting for ½ cwnd worth 

of dupacks
• Transmits at original rate after wait with ack clocking
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Fast Recovery 

Time

Sequence No

Sent for each dupack
after

W/2 dupacks arrive
X

Packets

Acks
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Outline

• TCP connection setup/data transfer

• TCP congestion avoidance

• TCP slow start
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Reaching Steady State

• Doing AIMD is fine in steady state but how do we 
get started …

• How does TCP know what is a good initial rate to 
start with?
• Should work both for a CDPD (10s of Kbps or less) and 

for supercomputer links (10 Gbps and growing)

• Need quick initial phase to help TCP get up to speed

• Also, after a timeout, the “pipe has drained”
• cwnd = 0.5 * cwnd

• How do we restart ACK clocking?
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Slow Start Packet Pacing

• How do we get this 
clocking behavior to start?
• Initialize cwnd = 1
• Upon receipt of every ack, 

cwnd = cwnd + 1
• Packet loss means you are 

going too fast
• Hopefully Fast Retransmit works!

• Allows TCP to quickly find 
a good window size
• Exponential increase!
• Reaches W in RTT * log2(W)
• Also starts packet pacing

• How is this slow?

Starting of Packet Pacing

1

3 2 3 2

7 6 5 4 7 6 5 4

12 11 10 9 813

Queuing
separates

packet pair

This repeats
each RTT

CC window
increases by

1 packet/ACK

Until pipe
is full
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Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks
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Time
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Initial
Slowstart

Fast 
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

TCP Sawtooth Behavior
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Important Lessons

• TCP state diagram  setup/teardown

• TCP timeout calculation  how is RTT estimated

• Modern TCP loss recovery
• Why are timeouts bad?

• How to avoid them?  e.g. fast retransmit


