
1

15-441 Computer Networking

Congestion Control

Peter Steenkiste

Fall 2015
www.cs.cmu.edu/~prs/15-441-F15

15-441
15-641

2

Outline

• Congestion control fundamentals
• Challenges

• Basic mechanisms

• TCP congestion control

• TCP slow start

2

3

Congestion

• Many sources “share*” resources inside network
• Problem: demand can exceed capacity of the network

• Sources are unaware of current state of resource
• Sources are unaware of each other

• Manifestations:
• Lost packets (buffer overflow at routers)
• Long delays (queuing in router buffers)

• Challenge:
How do we coordinate all nodes in the Internet?

10 Mbps

100 Mbps

1.5 Mbps

* Share  Compete for?

4

Causes & Costs of Congestion

• Four senders – multihop paths

• Timeout/retransmit

Q: What happens as rate
increases?

3

5

Causes & Costs of Congestion

• When packet dropped, any “upstream transmission
capacity used for that packet was wasted!

max

6

Congestion Collapse

• Definition: Increase in network load results in
decrease of useful work done

• Many possible causes
• Spurious retransmissions of packets still in flight

• Classical congestion collapse

• How can this happen with packet conservation

• Solution: better timers and TCP congestion control

• Undelivered packets
• Packets consume resources and are dropped elsewhere in

network

• Solution: congestion control for ALL traffic

4

Plan for Today

• So far we considered two networks
• Network 1: 1 router, 3 links

• Network 2: 4 routers, 8 links

• Next step: how do we deal with congestion in the
Internet
• Millions of routers

• Even more links

• 100s of millions of sources

7

8

Outline

• Congestion control fundamentals
• Challenges

• Basic mechanisms

• TCP congestion control

• TCP slow start

5

9

Congestion Control Goals

• A mechanism that:
• Uses network resources efficiently

• Prevents or avoids collapse

• Preserves fair network resource allocation

• Congestion collapse is not just a theory
• Has been frequently observed in many networks

10

Two Approaches Towards
Congestion Control

End-to-end congestion
control:

• No explicit feedback from
network

• End-systems infer
congestion status from
observed loss, delay, …

• Approach taken by TCP

• Problem: making it work
• Avoid significant packet loss

• Maintain high utilization

Network-assisted congestion
control:
• Routers provide feedback

to end systems
• Single bit indicating

congestion (SNA, DECbit,
TCP/IP ECN, ATM)

• Explicit rate sender should
send at (ATM)

• Problem: makes routers
more complicated
• Per-flow state → poor

scalability
• Can sometimes be avoided

6

11

Congestion Control with
Binary Feedback (TCP)

• Very simple mechanisms in network
• FIFO scheduling with shared buffer pool

• Feedback through packet drops (or binary feedback)

• TCP interprets packet drops as signs of
congestion and sender slows down

• This is an assumption: packet drops are not a sign of
congestion in all networks, e.g., wireless networks

• Sender periodically probes the network to check
whether more bandwidth has become available

• Key questions: how much to reduce (after a drop)
and increase (when probing) rate

12

Objectives

• Simple router behavior

• Distributedness

• Efficiency: X = xi(t)

• Fairness: (xi)2/n(xi
2)

• What are the important properties of this function?

• Convergence: control system must be stable

7

13

Linear Control

• Many different possibilities for reaction to
congestion and probing
• Examine simple linear controls

• Window(t + 1) = a + b Window(t)
• Different ai/bi for increase and ad/bd for decrease

• Supports various reaction to signals
• Increase/decrease additively
• Increased/decrease multiplicatively
• Which of the four combinations is optimal?

14

Phase Plots

• Simple way to
visualize behavior
of competing
connections over
time

• Sequence of
steps with 2
synchronized
senders User 1’s Allocation x1

User 2’s
Allocation

x2

8

15

Phase Plots

• What are
desirable
properties?

• What if flows are
not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2
Optimal point

Overload

Underutilization

16

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

• Both X1 and X2

increase/ decrease
by the same amount
over time

• Additive increase
improves fairness
and additive
decrease reduces
fairness

9

17

Muliplicative Increase/Decrease

• Both X1 and X2

increase by the
same factor over
time
• Extension along

line through
origin

• Constant fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

18

Achieving Fairness AND Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation x2

a=0
b=1

a>0 & b<1

a<0 & b>1

a<0 & b<1

a>0 & b>1

10

19

What is the Right Choice?

• Constraints limit
us to AIMD
• Can have

multiplicative
term in increase
(MAIMD)

• AIMD moves
towards optimal
point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

20

Outline

• Congestion control fundamentals

• TCP congestion control
• Implementing AIMD

• Packet pacing

• Fast recovery

• TCP slow start

11

21

TCP Congestion Control:
Implicit Feedback and AIMD

• Distributed, fair and efficient

• Packet loss is seen as sign of congestion and results in a
multiplicative rate decrease: factor of 2

• TCP periodically probes for available bandwidth by
increasing its rate: by one packet per RTT

Time

Rate

22

Implementation Issue

• Operating system timers are very coarse – how to pace
packets out smoothly?

• Implemented using a congestion window that limits how
much data can be in the network.
• Similar to using a flow control window to avoid flooding receiver

• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding
data is less than the congestion window.
• The amount of outstanding data is increased on a “send” and

decreased on “ack”

• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering
• Sender’s maximum window = Min (advertised window, cwnd)

12

23

Packet Conservation

• At equilibrium, inject packet into network only
when one is removed
• Controlled by sliding window, not rate

• But still need to avoid sending burst of packets 
would overflow links
• Need to carefully pace out packets

• Helps provide stability

• Need to eliminate spurious retransmissions
• Accurate RTO estimation

• Better loss recovery techniques (e.g. fast retransmit)

24

• Congestion window helps to “pace” the transmission of
data packets

• In steady state, a packet is sent when an ack is received
• Data transmission remains smooth, once it is smooth

• Self-clocking behavior

Pr

Pb

Ar
Ab

ReceiverSender

As

TCP Packet Pacing

13

25

Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segments

• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by (1 packet)/cwnd

• What is 1 packet?  1 MSS worth of bytes

• After cwnd packets have passed by  approximately increase
of 1 MSS

• Implements AIMD

26

Congestion Avoidance Sequence Plot
Pacing and “AI”

Time

Sequence No

Packets

Acks

8

9

10

14

27

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ retransmit

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

28

Remember Fast Retransmit?

Time

Congestion
Window

Fast
Retransmit

Much
Faster!

Fast
Retransmit

Fails

15

29

Fast Recovery

• With fast retransmit, TCP can often avoid timeout,
but loss signals congestion → cut window in half

• Challenge: how do we maintain ack clocking?
• Observation: each duplicate ack notifies sender

that a single packet has cleared the network
• When < new cwnd packets are outstanding

• Allow new packets out with each new duplicate
acknowledgement

• Behavior
• Sender is idle for some time – waiting for ½ cwnd worth

of dupacks
• Transmits at original rate after wait with ack clocking

30

Fast Recovery

Time

Sequence No

Sent for each dupack
after

W/2 dupacks arrive
X

Packets

Acks

16

31

Outline

• TCP connection setup/data transfer

• TCP congestion avoidance

• TCP slow start

32

Reaching Steady State

• Doing AIMD is fine in steady state but how do we
get started …

• How does TCP know what is a good initial rate to
start with?
• Should work both for a CDPD (10s of Kbps or less) and

for supercomputer links (10 Gbps and growing)

• Need quick initial phase to help TCP get up to speed

• Also, after a timeout, the “pipe has drained”
• cwnd = 0.5 * cwnd

• How do we restart ACK clocking?

17

33

Slow Start Packet Pacing

• How do we get this
clocking behavior to start?
• Initialize cwnd = 1
• Upon receipt of every ack,

cwnd = cwnd + 1
• Packet loss means you are

going too fast
• Hopefully Fast Retransmit works!

• Allows TCP to quickly find
a good window size
• Exponential increase!
• Reaches W in RTT * log2(W)
• Also starts packet pacing

• How is this slow?

Starting of Packet Pacing

1

3 2 3 2

7 6 5 4 7 6 5 4

12 11 10 9 813

Queuing
separates

packet pair

This repeats
each RTT

CC window
increases by

1 packet/ACK

Until pipe
is full

18

35

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

36

Time

C
o

n
g

es
ti

o
n

W
in

d
o

w

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

TCP Sawtooth Behavior

19

57

Important Lessons

• TCP state diagram  setup/teardown

• TCP timeout calculation  how is RTT estimated

• Modern TCP loss recovery
• Why are timeouts bad?

• How to avoid them?  e.g. fast retransmit

