

Congestion Control
Peter Steenkiste

Fall 2015 www.cs.cmu.edu/~prs/15-441-F15

Outline

- Congestion control fundamentals
 - Challenges
 - Basic mechanisms
- TCP congestion control
- TCP slow start

Congestion Collapse

- Definition: Increase in network load results in decrease of useful work done
- Many possible causes
 - · Spurious retransmissions of packets still in flight
 - · Classical congestion collapse
 - · How can this happen with packet conservation
 - · Solution: better timers and TCP congestion control
 - Undelivered packets
 - Packets consume resources and are dropped elsewhere in network
 - · Solution: congestion control for ALL traffic

Plan for Today

- So far we considered two networks
 - Network 1: 1 router, 3 links
 - Network 2: 4 routers, 8 links
- Next step: how do we deal with congestion in the Internet
 - · Millions of routers
 - Even more links
 - 100s of millions of sources

7

Outline

- Congestion control fundamentals
 - Challenges
 - Basic mechanisms
- TCP congestion control
- TCP slow start

Congestion Control Goals

- A mechanism that:
 - · Uses network resources efficiently
 - Prevents or avoids collapse
 - Preserves fair network resource allocation
- Congestion collapse is not just a theory
 - · Has been frequently observed in many networks

9

Two Approaches Towards Congestion Control

End-to-end congestion control:

- No explicit feedback from network
- End-systems infer congestion status from observed loss, delay, ...
- Approach taken by TCP
- Problem: making it work
 - · Avoid significant packet loss
 - Maintain high utilization

Network-assisted congestion control:

- Routers provide feedback to end systems
 - Single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)
 - Explicit rate sender should send at (ATM)
- Problem: makes routers more complicated
 - Per-flow state → poor scalability
 - · Can sometimes be avoided

Congestion Control with Binary Feedback (TCP)

- Very simple mechanisms in network
 - · FIFO scheduling with shared buffer pool
 - Feedback through packet drops (or binary feedback)
- TCP interprets packet drops as signs of congestion and sender slows down
 - This is an assumption: packet drops are not a sign of congestion in all networks, e.g., wireless networks
- Sender periodically probes the network to check whether more bandwidth has become available
- Key questions: how much to reduce (after a drop) and increase (when probing) rate

11

Objectives

- Simple router behavior
- Distributedness
- Efficiency: $X = \sum x_i(t)$
- Fairness: $(\Sigma x_i)^2/n(\Sigma x_i^2)$
 - What are the important properties of this function?
- Convergence: control system must be stable

Linear Control

- Many different possibilities for reaction to congestion and probing
 - · Examine simple linear controls
 - Window(t + 1) = a + b Window(t)
 - Different a_i/b_i for increase and a_d/b_d for decrease
- Supports various reaction to signals
 - Increase/decrease additively
 - Increased/decrease multiplicatively
 - Which of the four combinations is optimal?

13

Phase Plots

- Simple way to visualize behavior of competing connections over time
- Sequence of steps with 2 synchronized senders

Phase Plots • What are desirable properties? • What if flows are not equal? User 2's Allocation x₂ Optimal point Underutilization User 1's Allocation x₁

Muliplicative Increase/Decrease

- Both X₁ and X₂ increase by the same factor over time
 - Extension along line through origin
- Constant fairness

What is the Right Choice?

- Constraints limit us to AIMD
 - Can have multiplicative term in increase (MAIMD)
 - AIMD moves towards optimal point

19

Outline

- Congestion control fundamentals
- TCP congestion control
 - Implementing AIMD
 - · Packet pacing
 - Fast recovery
- TCP slow start

TCP Congestion Control: Implicit Feedback and AIMD

- · Distributed, fair and efficient
- Packet loss is seen as sign of congestion and results in a multiplicative rate decrease: factor of 2
- TCP periodically probes for available bandwidth by increasing its rate: by one packet per RTT

Implementation Issue

- Operating system timers are very coarse how to pace packets out smoothly?
- Implemented using a congestion window that limits how much data can be in the network.
 - · Similar to using a flow control window to avoid flooding receiver
 - · TCP also keeps track of how much data is in transit
- Data can only be sent when the amount of outstanding data is less than the congestion window.
 - The amount of outstanding data is increased on a "send" and decreased on "ack"
 - (last sent last acked) < congestion window
- Window limited by both congestion and buffering
 - Sender's maximum window = Min (advertised window, cwnd)

Packet Conservation

- At equilibrium, inject packet into network only when one is removed
 - Controlled by sliding window, not rate
 - But still need to avoid sending burst of packets → would overflow links
 - Need to carefully pace out packets
 - · Helps provide stability
- Need to eliminate spurious retransmissions
 - Accurate RTO estimation
 - Better loss recovery techniques (e.g. fast retransmit)

23

TCP Packet Pacing

- Congestion window helps to "pace" the transmission of data packets
- In steady state, a packet is sent when an ack is received
 - · Data transmission remains smooth, once it is smooth
 - · Self-clocking behavior

Congestion Avoidance

- If loss occurs when cwnd = W
 - Network can handle 0.5W ~ W segments
 - Set cwnd to 0.5W (multiplicative decrease)
- Upon receiving ACK
 - · Increase cwnd by (1 packet)/cwnd
 - What is 1 packet? → 1 MSS worth of bytes
 - After cwnd packets have passed by → approximately increase of 1 MSS
- Implements AIMD

Fast Recovery

- With fast retransmit, TCP can often avoid timeout, but loss signals congestion → cut window in half
- Challenge: how do we maintain ack clocking?
- Observation: each duplicate ack notifies sender that a single packet has cleared the network
- When < new cwnd packets are outstanding
 - Allow new packets out with each new duplicate acknowledgement
- Behavior
 - Sender is idle for some time waiting for ½ cwnd worth of dupacks
 - · Transmits at original rate after wait with ack clocking

Outline

- TCP connection setup/data transfer
- TCP congestion avoidance
- TCP slow start

31

Reaching Steady State

- Doing AIMD is fine in steady state but how do we get started ...
- How does TCP know what is a good initial rate to start with?
 - Should work both for a CDPD (10s of Kbps or less) and for supercomputer links (10 Gbps and growing)
 - Need quick initial phase to help TCP get up to speed
- Also, after a timeout, the "pipe has drained"
 - cwnd = 0.5 * cwnd
 - · How do we restart ACK clocking?

Important Lessons

- TCP state diagram → setup/teardown
- TCP timeout calculation → how is RTT estimated
- Modern TCP loss recovery
 - Why are timeouts bad?
 - How to avoid them? → e.g. fast retransmit