
Outline

- Transport introduction
- Error recovery and flow control
- Congestion control
- Transport optimization and futures

)

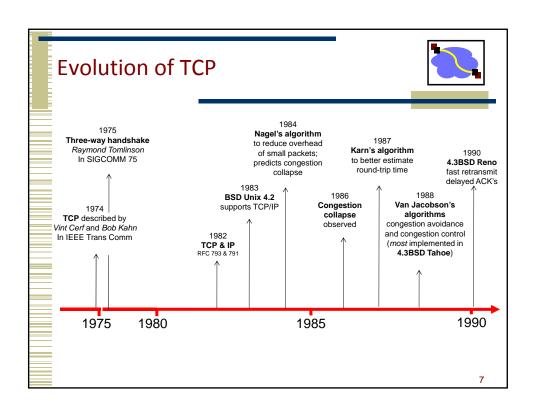
UDP: User Datagram Protocol [RFC 768]

- "No frills," "bare bones" Internet transport protocol
- Demultiplexing based on ports
- Optional checksum
 - One's complement add (weak)
- That's it!
- So why do we need UDP?
 - No connections: no delay, state
 - Remember DNS?
 - No congestion control: can lead to unpredictable delays
 - Problem for multimedia, games, ..
 - Good starting point for other transport protocols
 - Implemented at application level

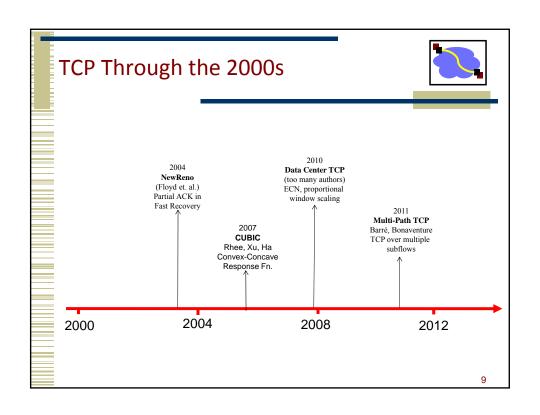
JZ DIIS	
Source port #	Dest port #
Length	Checksum

22 hita

Application data (message)

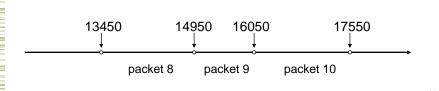

UDP segment format

5


High-Level TCP Characteristics

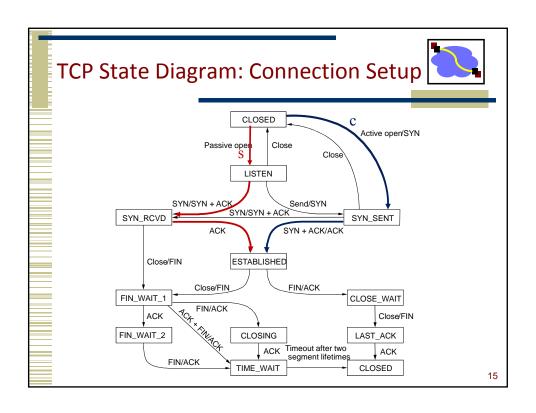
- Protocol implemented entirely at the ends
 - Fate sharing
- Protocol has evolved over time
 - Nearly impossible to change the header
 - Change processing at endpoints
 - Use options to add information to the header
 - These do change sometimes
 - Backward compatibility is what makes it TCP
- Most changes related to:
 - Faster networks, efficiency
 - Congestion control

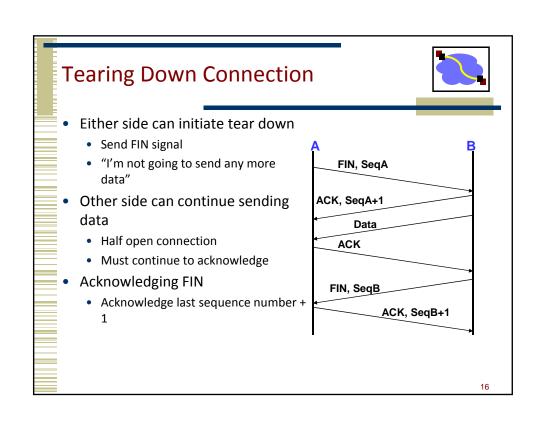
Outline


- Transport introduction
- Error recovery and flow control
 - Connection establishment
 - Review stop-and-wait and friends
 - ACK and retransmission strategies
 - · Making things work (well) in TCP
 - Timeouts
- Congestion control
- Transport optimization and futures

11

Sequence Number Space

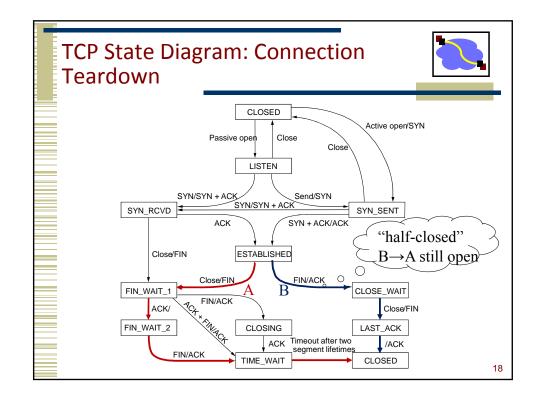



- Each byte in byte stream is numbered.
 - 32 bit value
 - Wraps around
 - Initial values selected at start up time
- TCP breaks up the byte stream into packets.
 - Packet size is limited to the Maximum Segment Size
- Each packet has a sequence number.
 - Indicates where it fits in the byte stream

Establishing Connection: Three-Way handshake Each side notifies other of starting sequence number it will SYN: SeqC use for sending • Why not simply chose 0? · Must avoid overlap with earlier incarnation ACK: SeqC+1 Security issues SYN: SeqS Each side acknowledges other's sequence number ACK: SeqS+1 SYN-ACK: Acknowledge sequence number + 1 Can combine second SYN with Client Server first ACK

TCP Connection Setup Example 09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80: S 4019802004:4019802004(0) win 65535 <mss 1260,nop,nop,sackOK> (DF) 09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123: S 3428951569:3428951569(0) ack 4019802005 win 5840 <mss 1460,nop,nop,sackOK> (DF) 09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80: ack 3428951570 win 65535 (DF) Client SYN SeqC: Seq. #4019802004, window 65535, max. seg. 1260 Server SYN-ACK+SYN Receive: #4019802005 (= SeqC+1) SeqS: Seq. #3428951569, window 5840, max. seg. 1460 Client SYN-ACK Receive: #3428951570 (= SeqS+1)

TCP Connection Teardown Example



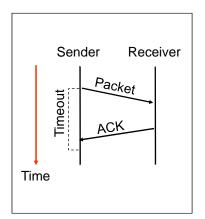
09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616: F 1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474: F 1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616: ack 1909787690 win 65434 (DF)

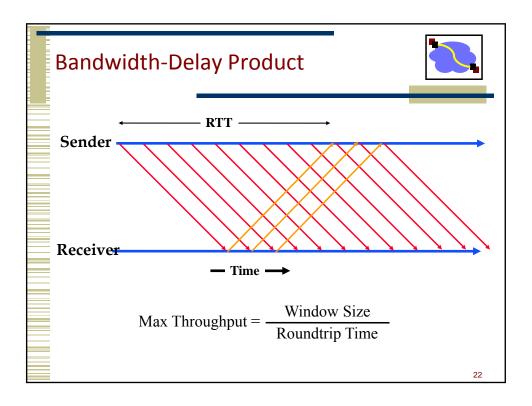
- Session
 - Echo client on 128.2.222.198, server on 128.2.210.194
- Client FIN
 - SeqC: 1489294581
- Server ACK + FIN
 - Ack: 1489294582 (= SeqC+1)
 - SeqS: 1909787689
- Client ACK
 - Ack: 1909787690 (= SeqS+1)

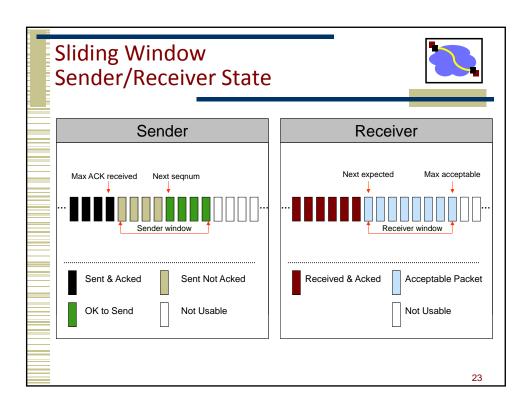
Outline


- Transport introduction
- Error recovery and flow control
 - Connection establishment
 - Review stop-and-wait and friends
 - ACK and retransmission strategies
 - · Making things work (well) in TCP
 - Timeouts
- Congestion control
- Transport optimization and futures

19

Review: Stop and Wait


- ARQ
 - Receiver sends acknowledgement (ACK) when it receives packet
 - Sender waits for ACK and timeouts if it does not arrive within some time period
- Simplest ARQ protocol
- Send a packet, stop and wait until ACK arrives



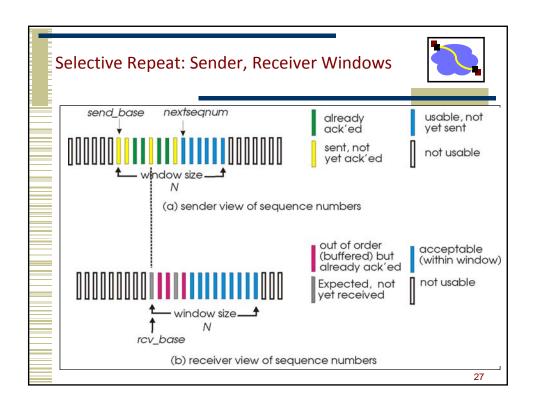
Problems with Stop and Wait

- Stop and wait offers provides flow and error control, but ..
- How do we overcome the limitation of one packet per roundtrip time: Sliding window.
 - Receiver advertises a "window" of buffer space
 - Sender can fill the window -> fills the "pipe"
- How do we distinguish new and duplicate packets:
 Sequence numbers
 - 1 bit enough for stop and wait
 - More bits for larger windows (see datalink lecture)

Window Sliding - Common Case

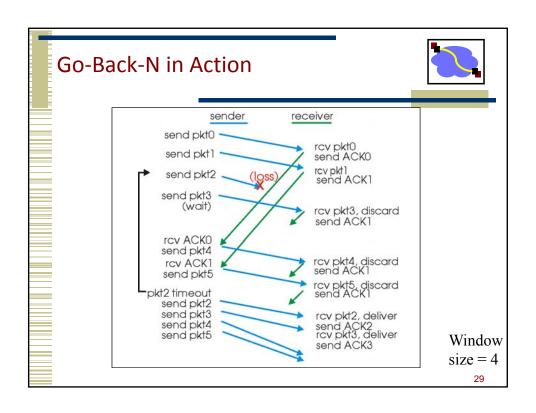
- On reception of new ACK (i.e. ACK for something that was not acked earlier)
 - Increase sequence of max ACK received
 - · Send next packet
- On reception of new in-order data packet (next expected)
 - Hand packet to application
 - Send an ACK that acknowledges the paper
 - Increase sequence of max acceptable packet
- But what do we do if packets are lost or reordered?
 - · Results in a gap in the sequence of received packets
 - Raises two questions
 - What feedback does receiver give to the sender, and how?
 - How and when does the sender retransmit packets

ACKing Strategies


- ACKs acknowledge exactly one packet
 - Simple solution, but bookkeeping on sender is a bit messy
 - Must keep per packet state not too bad
 - Inefficient: need ACK packet for every data packet
- Cumulative acks acknowledge all packets up to a specific packet
 - Maybe not as intuitive, but simple to implement
 - Stalls the pipe until lost packet is retransmitted and ACKed
- Negative ACKs allow a receiver to ask for a packet that is (presumed to be) lost
 - Avoids the delay associated with a timeout

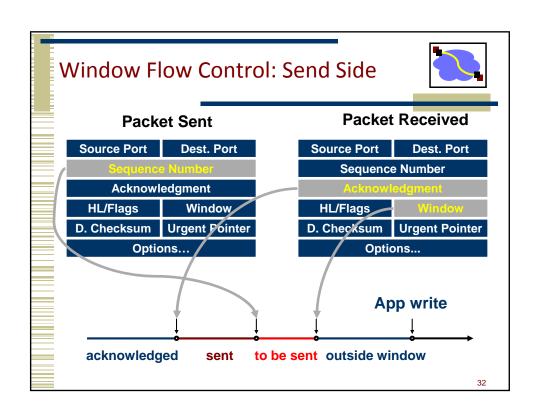
25

Selective Repeat


- Receiver individually acknowledges correctly received packets
 - If packets out of order, receiver cannot hand data to application so window does not move forward
- Sender only resends packets for which ACK not received
 - Sender timer for individual unACKed packet
- Sender window calculation
 - N consecutive seq #'s
 - Starts with an earliest unacknowledged packet
 - Some packets in the window may have been acknowledged

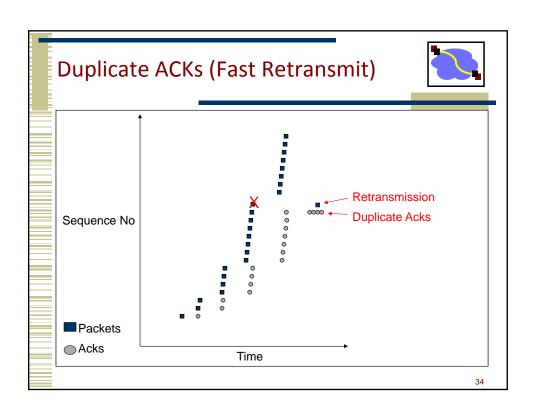
Go-Back-N Recovery

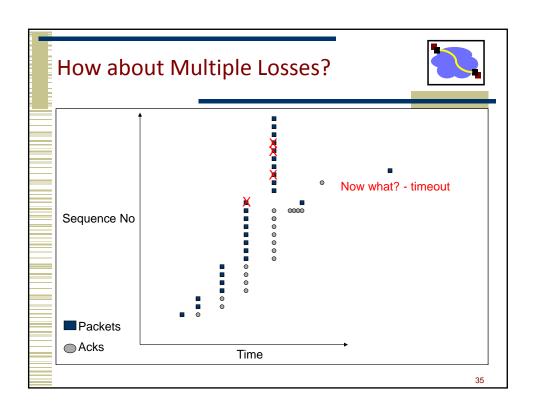
- Receiver sends cumulative ACKs
 - When out of order packet send nothing (wait for sender to timeout)
 - Otherwise sends cumulative ACK
- Sender implements Go-Back-N recovery
 - Set timer upon transmission of packet
 - · Retransmit all unacknowledged packets upon timeout
- Performance during loss recovery
 - Single loss can result in many packet retransmissions
 - Timeouts are expensive
 - Puts emphasis on simplicity of implementation
 - E.g., receiver can drop non-contiguous packets (resent anyway)



- Transport introduction
- Error recovery and flow control
 - Connection establishment
 - Review stop-and-wait and friends
 - ACK and retransmission strategies
 - Making things work (well) in TCP
 - Timeouts
- Congestion control
- Transport optimization and futures

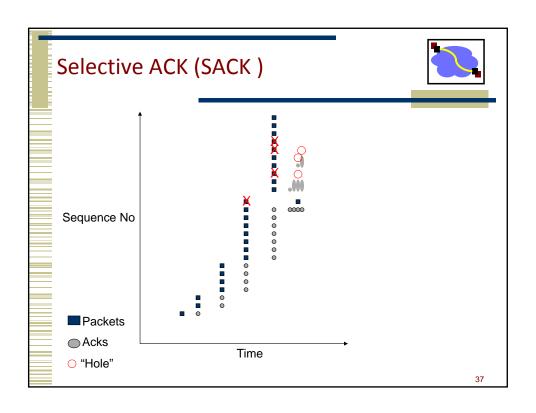
TCP = Go-Back-N Variant


- Sliding window with cumulative acks
 - Receiver can only return a single "ack" sequence number to the sender.
 - Acknowledges all bytes with a lower sequence number
 - Starting point for retransmission
- But: sender only retransmits a single packet after timeout.
 - Reason???
 - Only one that that specific packet is lost
 - Network is congested → shouldn't overload it with questionable retransmits
- Receiver stores out of order packets
 - Can we used after the sender "fills the gap"
- Error control is based on byte sequences, not packets.
 - Retransmitted packet can be different from the original lost packet Why?



Duplicate ACKs (Fast Retransmit)

- Basic Go- Back-N incurs timeout for every loss
 - Can we do better? How about a NACK?
- Receiver sends "duplicate ack" for out of order packets
 - Repeated acks for the same sequence
 - Serves as a NACK no room in header for real NACK
- When can duplicate acks occur?
 - Loss
 - Packet re-ordering oops! Unnecessary retransmit
- Solution assume re-ordering is infrequent :
 - Receipt of 3 or more duplicate acks is indication of loss
 - Sender does not wait for timeout to retransmit packet
 - When does this fail?

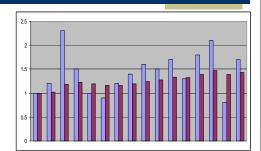


SACK

- Basic problem is that cumulative acks provide little information
- Selective acknowledgement (SACK) essentially adds a bitmask of packets received
 - Implemented as a TCP option
 - Encoded as a set of received byte ranges (max of 4 ranges/often max of 3)
- When to retransmit?
 - Still need to deal with reordering \rightarrow wait for out of order by 3pkts

- Transport introduction
- Error recovery and flow control
 - Connection establishment
 - Review stop-and-wait and friends
 - ACK and retransmission strategies
 - Making things work (well) in TCP
 - Timeouts
- Congestion control
- Transport optimization and futures

Round-trip Time Estimation


- Wait at least one RTT before retransmitting
- Importance of accurate RTT estimators:
 - Low RTT estimate: unneeded retransmissions
 - High RTT estimate: poor throughput
- RTT estimator must adapt to change in RTT
 - But not too fast, or too slow!
- So how do we estimate RTT?

39

Original TCP Round-trip Estimator

- Round trip times exponentially averaged:
 - New RTT = α (old RTT) + (1 α) (new sample)
 - Recommended value for α : 0.8 0.9
 - 0.875 for most TCP's

- Retransmit timer set to (b * RTT), where b = 2
 - · Every time timer expires, RTO exponentially backed-off
- Not good at preventing spurious timeouts
 - Why?

Jacobson's Retransmission Timeout

- Key observation:
 - At high loads, round trip variance is high
- Solution:
 - Base RTO on RTT and standard deviation
 - RTO = RTT + 4 * rttvar
 - new rttvar = β * dev + (1- β) old rttvar
 - Dev = linear deviation
 - Inappropriately named actually smoothed linear deviation
- In practice: TOs use coarse clock, e.g., 100s of msec

11

Important Lessons

- Transport service
 - UDP → mostly just IP service + demultiplexing
 - TCP → congestion controlled, reliable, byte stream
- Types of ARQ protocols
 - Sliding window for high throughput
 - Go-back-n → can keep link utilized (except w/ losses)
 - Selective repeat → efficient loss recovery
- TCP uses go-back-n variant
 - Avoid unnecessary retransmission ..
 - ... and gaps in the flow (fast retransmit/recovery, SACK)