“ 15-441 Computer Networking

Transport Protocols
Peter Steenkiste

Fall 2015
www.cs.cmu.edu/~prs/15-441-F15

Outline i‘.

e Transport introduction

e Error recovery and flow control

e Congestion control

e Transport optimization and futures

Transport Protocols

"«

e Lowest level end-to-end
protocol.

e Header generated by
sender is interpreted only
by the destination

e Routers view transport
header as part of the
payload

»
»

Transport g,

Datalink "---»*---» Datalink
Physical <—><—> Physical

router

Transport

Functionality Split

"«

e Network provides best-effort delivery only

e End-systems must implement many functions

e Demultiplexing

e Error detection

e Error recovery

e |n-order delivery

e Message boundaries

e Connection abstraction
e Congestion control

[UDP

TCP

UDP: User Datagram Protocol [rFc 768]

"«

e “No frills,” “bare bones” Internet
transport protocol

e Demultiplexing based on ports

e Optional checksum
e One’s complement add (weak)

e That'sit!
e So why do we need UDP?

No connections: no delay, state

e Remember DNS?
No congestion control: can lead to
unpredictable delays

e Problem for multimedia, games, ..
Good starting point for other
transport protocols

¢ Implemented at application level

32 bits ——

Source port # Dest port #

Length Checksum

Application
data
(message)

UDP segment format

High-Level TCP Characteristics

"«

e Protocol implemented entirely at the ends

e Fate sharing

e Protocol has evolved over time

e Change processing at endpoints
e Use options to add information to the header

e These do change sometimes

* Most changes related to:

e Faster networks, efficiency
e Congestion control

e Nearly impossible to change the header

e Backward compatibility is what makes it TCP

Evolution of TCP

1975
Three-way handshake

1984

Nagel's algorithm
to reduce overhead

1987

Raymond Tomlinson of small packets; Karn’s algo_rithm 1990
In SIGCOMM 75 predicts congestion to better estimate 4.3BSD Reno
collapse round-trip time fast retransmit
delayed ACK’s
1983
BSD Unix 4.2 1986 1988
1974 supports TCP/IP Congestion Van Jacobson’s
TCP described by collapse algorithms
Vint Cerf and Bob Kahn observed congestion avoidance
In IEEE Trans Comm 1982 and congestion control
TCP & IP (most implemented in
RFC 793 & 791 4.3BSD Tahoe)
1 T T —D
1975 1980 1985 1990
7
1994 1996
T/TCP SACK TCP
(Braden) (Floyd et al)
Transaction Selective
TCP Acknowledgement
1993 1994 1996 1996
TCP Vegas ECN Hoe FACK TCP
(Brakmo et al) (Floyd) NewReno startup (Mathis et al)
delay-based Explicit and loss recovery extension to SACK
congestion avoidance Congestion
Notification
T Y T >
1993 1994 1996

TCP Through the 2000s

2004

NewReno
(Floyd et. al.)
Partial ACK in
Fast Recovery

"«

Convex-Concave

2010
Data Center TCP
(too many authors)
ECN, proportional
window scaling

2007
CuUBIC
Rhee, Xu, Ha

Response Fn.

2011
Multi-Path TCP
Barré, Bonaventure
TCP over multiple
subflows

2000

| |
2004

2008

2012

A 4

TCP and its Header

e The cadillac of

transport protocols

e Demultiplexing
e Connections

e Sequence numbers

e Reliable

e Acks, checksum
e Flow control

e Window

e Congestion control

¢ Nothing?
e Bookkeeping ++

"«

Source port

Destination port

Sequence number

Acknowledgement
HdrLen| o | Flags | Advertised window
Checksum Urgent pointer

Options (variable)

Data

10

Outline “

e Transport introduction
e Error recovery and flow control

e Connection establishment
e Review stop-and-wait and friends

ACK and retransmission strategies

Making things work (well) in TCP
e Timeouts

e Congestion control
e Transport optimization and futures

11

Sequence Number Space i‘.

e Each byte in byte stream is numbered.

e 32 bit value

e Wraps around

e [nitial values selected at start up time
e TCP breaks up the byte stream into packets.

e Packet size is limited to the Maximum Segment Size
e Each packet has a sequence number.

¢ Indicates where it fits in the byte stream

13450 14950 16050 17550

packet 8 packet 9 packet 10

12

Establishing Connection: n
Three-Way handshake
e Each side notifies other of
starting sequence number it will
use for sending
e Why not simply chose 0?

e Must avoid overlap with earlier

incarnation ACK: SeqC+1
e Security issues SYN: SeqS

SYN: SeqC

e Each side acknowledges other’s
sequence number ACK: SeqS+1

e SYN-ACK: Acknowledge sequence
number + 1

e Can combine second SYN with
first ACK Client Server

13

TCP Connection Setup Example i‘.

09:23:33.042318 1P 128.2.222.198.3123 > 192.216.219.96.80:
S 4019802004:4019802004(0) win 65535
<mss 1260,nop,nop,sackOK> (DF)

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123:
S 3428951569:3428951569(0) ack 4019802005 win 5840
<mss 1460,nop,nop,sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80:
. ack 3428951570 win 65535 (DF)

e C(Client SYN

e SeqC: Seq. #4019802004, window 65535, max. seg. 1260
e Server SYN-ACK+SYN

e Receive: #4019802005 (= SeqC+1)

e SeqS: Seq. #3428951569, window 5840, max. seg. 1460
e Client SYN-ACK

e Receive: #3428951570 (= SeqS+1)
14

TCP State Diagram: Connection Setup

"«

CLOSED

Passive ope! Close

LISTEN

SYN/SYN + AC
SYN/SYN +ACK

Send/SYN

Active open'SYN

SYN_RCVD
ACK \

Close/FIN

SYN + ACK/ACK

ACK Timeout after two
segment lifetimes

SYN_SENT

CLOSE_WAIT

Close/FIN

LAST_ACK

ACK

TIME_WAIT CLOSED

15

Tearing Down Connection

e Either side can initiate tear down
¢ Send FIN signal
¢ “I'm not going to send any more
data”
e Other side can continue sending
data
¢ Half open connection
e Must continue to acknowledge

e Acknowledging FIN

e Acknowledge last sequence number +
1

A

B
FIN, SeqgA

\

ACK, SeqA+1
M

ACK

\.

ACK, SeqB+1

16

TCP Connection Teardown Example “

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616:
F 1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474:
F 1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616:
. ack 1909787690 win 65434 (DF)

e Session
e Echoclient on 128.2.222.198, server on 128.2.210.194
e C(lientFIN
e SeqC: 1489294581
e Server ACK + FIN
e Ack: 1489294582 (= SeqC+1)
e SeqS: 1909787689
e C(Client ACK
e Ack: 1909787690 (= SeqS+1)

17

TCP State Diagram: Connection “

Teardown

CLOSED

Active open'SYN
Passive ope Close

LISTEN

SYN_RCVD SYN_SENT

Close/FIN

CLOSE_WAIT

Close/FIN

LAST_ACK

CLOSED

AcK Timeout after two
segment lifetime

FIN/ACK

TIME_WAIT

“half-closed”

18

Outline

"«

* Transport introduction

e Error recovery and flow control

e Connection establishment

e Review stop-and-wait and friends

e Timeouts

e Congestion control

ACK and retransmission strategies
Making things work (well) in TCP

e Transport optimization and futures

19

Review: Stop and Wait

"«

* ARQ
* Receiver sends

acknowledgement (ACK)
when it receives packet

» Sender waits for ACK and
timeouts if it does not
arrive within some time
period

» Simplest ARQ protocol

« Send a packet, stop and
wait until ACK arrives

Time

Sender Receiver

: .&

___Ti_m_g_out

20

10

Problems with Stop and Wait “

e Stop and wait offers provides flow and error control,
but ..

e How do we overcome the limitation of one packet per
roundtrip time: Sliding window.
* Receiver advertises a “window” of buffer space
e Sender can fill the window -> fills the “pipe”
e How do we distinguish new and duplicate packets:
Sequence numbers
e 1 bit enough for stop and wait
e More bits for larger windows (see datalink lecture)

21

Bandwidth-Delay Product i\.

RTT
Sender \\\\\T\T >
NN\
\\\\
NN\
D \\
Receives N N \
— Time =
Max Throughput = Window Size

Roundtrip Time

22

11

Sliding Window
Sender/Receiver State

"«

Sender

Receiver

Max ACK received Next segnum

& LT g

Next expected Max acceptable

8 1T g

I Sent & Acked D Sent Not Acked

I OK to Send D Not Usable

I Received & Acked D Acceptable Packet

D Not Usable

23

Window Sliding — Common Case i‘.

e On reception of new ACK (i.e. ACK for something that was not

acked earlier)

¢ Increase sequence of max ACK received

¢ Send next packet

e On reception of new in-order data packet (next expected)

¢ Hand packet to application

e Send an ACK that acknowledges the paper
¢ Increase sequence of max acceptable packet

e But what do we do if packets are lost or reordered?
e Results in a gap in the sequence of received packets

e Raises two questions

e What feedback does receiver give to the sender, and how?
¢ How and when does the sender retransmit packets

24

12

ACKing Strategies “

e ACKs acknowledge exactly one packet
e Simple solution, but bookkeeping on sender is a bit messy
e Must keep per packet state — not too bad
e |nefficient: need ACK packet for every data packet
e Cumulative acks acknowledge all packets up to a
specific packet
e Maybe not as intuitive, but simple to implement
e Stalls the pipe until lost packet is retransmitted and ACKed

e Negative ACKs allow a receiver to ask for a packet that
is (presumed to be) lost

e Avoids the delay associated with a timeout
25

Selective Repeat i‘.

e Receiver individually acknowledges correctly received

packets
e |f packets out of order, receiver cannot hand data to application
so window does not move forward

e Sender only resends packets for which ACK not received
e Sender timer for individual unACKed packet
e Sender window calculation

e N consecutive seq #'s

e Starts with an earliest unacknowledged packet
e Some packets in the window may have been acknowledged

26

13

Selective Repeat: Sender, Receiver Windows i‘

send_base nextseqgnum already usable, not
v v ack’'ed yet sent
JU000CERERUERIRNN000000 | servnets [motscce
t __ window size —%)
N

(a) sender view of sequence numbers

out of order

acceptable
(buffered) but (within window)
already ack’'ed

LT ey B

window size —#4
N

rcv_base

(b) receiver view of sequence numbers

27

Go-Back-N Recovery i‘.

e Receiver sends cumulative ACKs

e When out of order packet - send nothing (wait for sender to
timeout)

e Otherwise sends cumulative ACK
e Sender implements Go-Back-N recovery
e Set timer upon transmission of packet
e Retransmit all unacknowledged packets upon timeout
e Performance during loss recovery
e Single loss can result in many packet retransmissions
e Timeouts are expensive

e Puts emphasis on simplicity of implementation
e E.g., receiver can drop non-contiguous packets (resent anyway)

28

14

Go-Back-N in Action

"«

sender

send pki0
send pktl
send pki2

send pkt3
(waif)

rcv ACKO
send pkid
rev ACKI

send pkt5 K’

—pkt2 timeout

send pki2
send pkt3
send pktd
send pktb

\(i&):ss

N

Bl
\
\

X

receiver

rcv pki0
send ACKO

rev pktl
send ACK]

rcv pki3, discard
send ACK1

rcv pkid, discard
send 1

cv pkiS, discard
r:;engAC}?]I '

rcv pki2, deliver

d A
?89 pk‘rg,}geliver
send ACK3

Window
size=4
29

"«

Transport introduction

e Connection establishment

e Review stop-and-wait and friends

Outline
[]
[]
e Timeouts
[]

Making things work (well) in TCP

Congestion control

Error recovery and flow control

ACK and retransmission strategies

Transport optimization and futures

30

15

TCP = Go-Back-N Variant “

Sliding window with cumulative acks
e Receiver can only return a single “ack” sequence number to the sender.
e Acknowledges all bytes with a lower sequence number
e Starting point for retransmission
But: sender only retransmits a single packet after timeout.
e Reason???
¢ Only one that that specific packet is lost
o Network is congested - shouldn’t overload it with questionable retransmits
Receiver stores out of order packets
e Can we used after the sender “fills the gap”
Error control is based on byte sequences, not packets.

e Retransmitted packet can be different from the original lost packet —
Why?

31

Window Flow Control: Send Side i‘.

Packet Sent Packet Received

Dest_Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags_—
| D. Chegisum | urgent Pointer |

irags [winaon”
5 Ceckum | Urgent ginter

App write
} } | |

acknowledged sent to be sent outside window

32

16

"«

Duplicate ACKs (Fast Retransmit)

e Basic Go- Back-N incurs timeout for every loss
e Can we do better? How about a NACK?
e Receiver sends “duplicate ack” for out of order packets

e Repeated acks for the same sequence
e Serves as a NACK — no room in header for real NACK

e When can duplicate acks occur?

e Loss
e Packet re-ordering — oops! Unnecessary retransmit

e Solution - assume re-ordering is infrequent :
e Receipt of 3 or more duplicate acks is indication of loss

33

e Sender does not wait for timeout to retransmit packet

¢ When does this fail?

"«

Duplicate ACKs (Fast Retransmit)
X - . Retransmission
Sequence No H o ®®*— Duplicate Acks
Ml Packets "t
O Acks Time
34

17

How about Multiple Losses? “

u
u
L]
1
)'(u
2 ® Now what? - timeout
¢]
[| o [ecee)
Sequence No [°
[| o
[| o
[| o
[| o
[| o
[| [¢)
[| [¢)
[| [¢)
[| [¢)
[| [¢)
[| [¢)
[| [¢)
Ml Packets
Ack)
OAcks Time

35

SACK i‘.

e Basic problem is that cumulative acks provide little
information

e Selective acknowledgement (SACK) essentially adds a
bitmask of packets received
e Implemented as a TCP option

e Encoded as a set of received byte ranges (max of 4
ranges/often max of 3)

e When to retransmit?

e Still need to deal with reordering = wait for out of order by
3pkts

36

18

"«

Selective ACK (SACK)
K
o
X
Sequence No = °
M Packets "
@ Acks .
Time
O “Hole”
37
Outline i\.

e Transport introduction

e Error recovery and flow control

e Connection establishment

* Review stop-and-wait and friends

e Timeouts

e Congestion control

e Transport optimization and futures

ACK and retransmission strategies
Making things work (well) in TCP

38

19

Round-trip Time Estimation “

Wait at least one RTT before retransmitting

e Importance of accurate RTT estimators:

e Low RTT estimate: unneeded retransmissions
e High RTT estimate: poor throughput
RTT estimator must adapt to change in RTT
e But not too fast, or too slow!

So how do we estimate RTT?

Original TCP Round-trip Estimator i‘.

® Round trip times 2
exponentially averaged: 2 1
e New RTT = (old RTT) +

(1-0) (new sample) B
e Recommended value for ! HRE
a:0.8-0.9 o
e 0.875 for most TCP’s

¢ Retransmit timer setto (b * RTT), where b = 2
< Every time timer expires, RTO exponentially backed-off

* Not good at preventing spurious timeouts
e Why?

20

Jacobson’s Retransmission Timeout “

e Key observation:
e At high loads, round trip variance is high

e Solution:
e Base RTO on RTT and standard deviation
e RTO =RTT + 4 * rttvar
e new_rttvar = 3 * dev + (1- B) old_rttvar
e Dev = linear deviation

e Inappropriately named — actually smoothed linear
deviation

* In practice: TOs use coarse clock, e.g., 100s of msec

a1

Important Lessons i‘.

e Transport service
e UDP - mostly just IP service + demultiplexing
e TCP - congestion controlled, reliable, byte stream
e Types of ARQ protocols
e Sliding window for high throughput
e Go-back-n = can keep link utilized (except w/ losses)
¢ Selective repeat = efficient loss recovery
e TCP uses go-back-n variant
e Avoid unnecessary retransmission ..
e ... and gaps in the flow (fast retransmit/recovery, SACK)

42

21

