
1

15-441 Computer Networking

Lecture 13: Congestion Control
Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

15-441
15-641

2

Outline

• Congestion control fundamentals
• Challenges
• Basic mechanisms

• TCP congestion control

• TCP slow start

3

Congestion

• Many sources “share*” resources inside network
• Problem: demand can exceed capacity of the network

• Sources are unaware of current state of resource
• Sources are unaware of each other

• Manifestations:
• Lost packets (buffer overflow at routers)
• Long delays (queuing in router buffers)

• Challenge:
How do we coordinate all nodes in the Internet?

10 Mbps

100 Mbps

1.5 Mbps

* Share  Compete for? 4

Causes & Costs of Congestion

• Four senders – multihop paths
• Timeout/retransmit

Q: What happens as rate
increases?

2

5

Causes & Costs of Congestion

• When packet dropped, any “upstream transmission
capacity used for that packet was wasted!

max

6

Congestion Collapse

• Definition: Increase in network load results in
decrease of useful work done

• Many possible causes
• Spurious retransmissions of packets still in flight

• How can this happen with packet conservation
• Solution: better timers and TCP congestion control

• Undelivered packets
• Packets consume resources and are dropped elsewhere in

network
• Solution: congestion control for ALL traffic

Plan for Today

• So far we considered two networks
• Network 1: 1 router, 3 links
• Network 2: 4 routers, 8 links

• Next step: how do we deal with congestion in the
Internet
• Millions of routers
• Even more links
• 100s of millions of senders

7 8

Outline

• Congestion control fundamentals
• Challenges
• Basic mechanisms

• TCP congestion control

• TCP slow start

3

9

Congestion Control Goals

• A mechanism that:
• Uses network resources efficiently:

High X = xi(t)
• Prevents collapse

• Congestion collapse is not just a theory
• Has been frequently observed in many networks

• Preserves fair network resource allocation
For example: (xi)2/n(xi

2)

10

Two Approaches Towards
Congestion Control

End-to-end congestion
control:
• No explicit feedback from

network
• End-systems infer

congestion status from
observed loss, delay, …

• Approach taken by TCP
• Problem: making it work

• Avoid significant packet loss
• Maintain high utilization

Network-assisted congestion
control:
• Routers provide feedback

to end systems
• Single bit indicating

congestion (SNA, DECbit,
TCP/IP ECN, ATM)

• Explicit rate sender should
send at (ATM)

• Problem: makes routers
more complicated
• Per-flow state → poor

scalability
• Can sometimes be avoided

11

Congestion Control with
Binary Feedback (TCP)

• Very simple mechanisms in network
• FIFO scheduling with shared buffer pool
• Feedback through packet drops (or binary feedback)

• TCP interprets packet drops as signs of
congestion and sender slows down

• This is an assumption: packet drops are not a sign of
congestion in all networks, e.g., wireless networks

• Sender periodically probes the network to check
whether more bandwidth has become available

• Key questions: how much to reduce (after a drop)
and increase (when probing) rate

12

Linear Control

• Many different possibilities for reaction to
congestion and probing for bandwidth
• Examine simple linear controls

• Window(t + 1) = a + b Window(t)
• Different ai/bi for increase and ad/bd for decrease

• Supports various reaction to signals
• Increase/decrease additively
• Increased/decrease multiplicatively
• Which of the four combinations is optimal?

• Example of closed loop control: system must
converge!
• In addition to efficiency, fairness, …. goals

4

13

Phase Plots

• Simple way to
visualize behavior
of competing
connections over
time

• Sequence of
steps with 2
synchronized
senders User 1’s Allocation x1

User 2’s
Allocation

x2

14

Phase Plots

• What are
desirable
properties?

• What if flows are
not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2
Optimal point

Overload

Underutilization

15

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

• Both X1 and X2
increase/ decrease
by the same amount
over time

• Additive increase
improves fairness
and additive
decrease reduces
fairness

16

Muliplicative Increase/Decrease

• Both X1 and X2
increase by the
same factor over
time
• Extension along

line through
origin

• Constant fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

5

17

Achieving Fairness AND Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation x2

a=0
b=1

a>0 & b<1

a<0 & b>1

a<0 & b<1

a>0 & b>1

18

What is the Right Choice?

• Constraints limit
us to AIMD
• Can have

multiplicative
term in increase
(MAIMD)

• AIMD moves
towards optimal
point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

19

Outline

• Congestion control fundamentals

• TCP congestion control
• Implementing AIMD
• Packet pacing
• Fast recovery

• TCP slow start

20

TCP Congestion Control:
Implicit Feedback and AIMD

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion and results in a

multiplicative rate decrease: factor of 2
• TCP periodically probes for available bandwidth by

increasing its rate: by one packet per RTT

Time

Rate

6

21

Implementation Issue:
How to Implement AIMD efficiently

• Operating systems have coarse grain timers – how do
control the transmit rate?
• 100 Mbs → 1500 Byte packet every ~120 µsec

• Solution: uses a congestion window to implement AIMD
• This is the same strategy that is used for flow control
• Rate = window / RTT, with RTT more or less constant

• If loss occurs, cut congestion window W in half
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK, increase cwnd by (1 packet)/cwnd
• What is 1 packet?  1 MSS worth of bytes
• After cwnd packets have passed by  increased cwnd by 1 MSS
• Corresponds to an increase of 1 MSS every roundtrip time

22

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ retransmit

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

23

Implementation Issue:
Putting the Pieces Together

• Both congestion and flow control want to control when
packets can be transmitted – who is really in charge?

• Solution: using a single window to control transmission
• Sender’s maximum window = Min (advertised window, cwnd)
• In English: can send packets if it does not flood receiver AND it

does not congest the network

• The two windows are updated independently
• Both windows are decreased when a packet is send
• Advertised window: increased when the receiver sends window

update, meaning it freed up a buffer
• Cwnd: increased when the receiver ACKs the reception of data,

meaning data left the network
• Either event can trigger a send

24

Implementation Issue:
How to Send Packets Smoothly

• Networks do not like very bursty traffic
• Leads to queue overflow and increases packet loss

• Solution: congestion window helps to “pace” the
transmission of data packets – “packet pacing”

• In steady state, a packet is sent when an ack is received
• Self-clocking behavior: flow remains smooth, once it is smooth

Pr

Pb

ArAb

ReceiverSender

As

7

26

Congestion Avoidance Sequence Plot
Pacing and “AI”

Time

Sequence No

Packets

Acks

8

9

10

27

Remember Fast Retransmit?

Time

Congestion
Window

Fast
Retransmit

Much
Faster!

Fast
Retransmit

Fails

28

Outline

• TCP connection setup/data transfer

• TCP congestion avoidance

• TCP fast recovery and slow start
• Almost there!

What Happens when we are
Not in Steady State

• “Self-clocking behavior: flow remains smooth, once it is
smooth”
• How do you become smooth if you are not?

• Is a issue where there is no data in transit
• No data in transit → no ACKs → no self clocking
• At the start of a connection, after an idle time, after a timeout

• Fast retransmit can avoid timeout but still disrupts flow
• Solution: fast recovery

• If there is an idle time, for whatever reason, we need to
(re)start packet pacing
• Solution: slow start

29

8

30

Fast Recovery

• With fast retransmit, TCP can often avoid timeout,
but loss signals congestion → cut window in half

• Challenge: how do we maintain ack clocking?
• Observation: each duplicate ack notifies sender

that a single packet has cleared the network
• When < new cwnd packets are outstanding

• Allow new packets to be sent for each new duplicate
acknowledgement

• Behavior
• Sender is idle for some time – waiting for ½ cwnd worth

of dupacks
• Transmits at original rate after wait with ack clocking

31

Fast Recovery

Time

Sequence No

Sent for each dupack
after

W/2 dupacks arrive
X

Packets

Acks

32

Reaching Steady State

• Doing AIMD is fine in steady state but how do we
get started …

• How does TCP know what is a good initial rate to
start with?
• Should work both for a CDPD (10s of Kbps or less) and

for supercomputer links (10 Gbps and growing)
• Need quick initial phase to help TCP get up to speed

• Also, after a timeout, the “pipe has drained”
• cwnd = 0.5 * cwnd
• How do we restart ACK clocking?

33

Slow Start Packet Pacing

• How do we get this
clocking behavior to start?
• Initialize cwnd = 1
• Upon receipt of every ack,

cwnd = cwnd + 1
• Packet loss means you are

going too fast
• Hopefully Fast Retransmit works!

• Allows TCP to quickly find
a good window size
• Exponential increase!
• Reaches W in RTT * log2(W)
• Also starts packet pacing

• How is this slow?

9

Starting of Packet Pacing

1

3 2 3 2

7 6 5 4 7 6 5 4

12 11 10 9 813

Queuing
separates

packet pair

This repeats
each RTT

CC window
increases by

1 packet/ACK

Until pipe
is full

35

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

36

Time

C
on

ge
st

io
n

W
in

do
w

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

TCP Sawtooth Behavior

57

Important Lessons

• TCP state diagram  setup/teardown

• TCP timeout calculation  how is RTT estimated

• Modern TCP loss recovery
• Why are timeouts bad?
• How to avoid them?  e.g. fast retransmit

