15-441 .
“. 15-641 Computer Networking

Lecture 12: Transport Protocols

Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

Outline

N

e Transport introduction

® TCP connection establishment

* Error recovery and flow control

e Making things work in TCP

e Congestion control

* Transport optimization and futures

Transport Protocols “

¢ Lowest level end-to-end
protocol.

e Header generated by
sender is interpreted only
by the destination

¢ Routers view transport
header as part of the Transport B g Transport
payload

-] [+ — — |

Datalink peataed KCmlmiall Datalink

Physical Physical

router

Functionality Split

"N

e Network provides best-effort delivery only

e End-systems must implement many functions
e Demultiplexing
e Error detection] UDP

e Error recovery

¢ In-order delivery

* Message boundaries TCP

¢ Connection abstraction

e Congestion control

UDP: User Datagram Protocol [rFc 768]

«

e “No frills,” “bare bones” Internet

32 bits ——

transport protocol

Source port #

Dest port #

e Demultiplexing based on ports

Length

Checksum

e Optional checksum

e One’s complement add (weak)

e That'sit!

¢ So why do we need UDP?

¢ No connections: no delay, state
* Remember DNS?
¢ No congestion control: can lead to

Application
data
(message)

unpredictable delays
¢ Problem for multimedia, games, ..
e Good starting point for other
transport protocols
¢ Implemented at application level

UDP segment format

High-Level TCP Characteristics

N

¢ Protocol implemented entirely on endpoints
¢ Fate sharing
¢ Protocol has evolved over time
e Nearly impossible to change the header
e Change processing at endpoints
¢ Use options to add information to the header
e Backward compatibility is what makes it TCP
e Most changes related to:
e Faster networks, efficiency
e Congestion control

Evolution of TCP

1975
Three-way handshake
Raymond Tomlinson
In SIGCOMM 75

1974
TCP described by
Vint Cerf and Bob Kahn
In IEEE Trans Comm

L\

1984
Nagel's algorithm
to reduce overhead

of small packets;

1987

Karn’s algorithm 1990
to better estimate

predicts congestion 4.3BSD Reno
collapse round-trip time fast retransmit
delayed ACK’s
1983
BSD Unix 4.2 1988
supports TCP/IP Congestion Van Jacobson’s
algorithms

1982

TCP & IP
RFC 793 & 791

congestion avoidance

and congestion control

(most implemented in
4.3BSD Tahoe)

L L

1 L
1975 1980

L]
1985

1990

TCP Through the 1990s

"N

1994 1996
T/TcP SACK TCP
(Braden) (Floyd et al)
Transaction Selective
TcP Acknowledgement
1993 1994 1996 1996
TCP Vegas ECN Hoe FACK TCP
(Brakmo et al) (Floyd) NewReno startup (Mathis et al)
delay-based Explicit and loss recovery extension to SACK
congestion avoidance Congestion
Notification
1\ >
T T T >
1993 1994 1996

TCP Through the 2000s

2004
NewReno

«

2010
Data Center TCP
(too many authors)

(Floyd et. al.) ECN, proportional
Partial ACK in window scaling
Fast Recovery 2011
Multi-Path TCP
2007 Barré, Bonaventure
CuBIC TCP over multiple
Rhee, Xu, Ha subflows
Convex-Concave
Response Fn.
T T T W
2000 2004 2008 2012

TCP and its Header i‘

e The cadillac of
transport protocols

Source port ‘ Destination port

e Demultiplexing Sequence number

e Connections

¢ Sequence numbers
e Reliable

e Acks, checksum

Acknowledgement

Heren‘ o‘ Flags | Advertised window

Checksum Urgent pointer

¢ Flow control
¢ Window

Options (variable)

e Congestion control Data
¢ Nothing?
e Bookkeeping ++

10

Outline

L\

e Transport introduction

TCP connection establishment
Error recovery and flow control
Making things work in TCP
Congestion control

Transport optimization and futures

11

Sequence Number Space i‘,

e Each byte in byte stream is numbered.
e 32 bit value
e Wraps around

¢ Initial values selected at start up time
e TCP breaks up the byte stream into packets.

¢ Packet size is limited to the Maximum Segment Size
e Each packet has a sequence number.

¢ Indicates where it fits in the byte stream

13fSO 1451350 160150 17f50

packet 8 packet 9 packet 10

12

Establishing Connection:
Three-Way handshake

«

e Each side notifies other of
starting sequence number it will
use for sending

e Why not simply chose 0?

¢ Must avoid overlap with earlier
incarnation

e Security issues

e Each side acknowledges other’s
sequence number

e SYN-ACK: Acknowledge sequence
number + 1

e Can combine second SYN with

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

first ACK Client

Server

13

TCP State Diagram: Connection Setup i‘

CLOSED

Active operVSYN
Passive opel Close

LISTEN

SYN_RCVD

SYN_SENT

Close/FIN

CLOSE_WAIT

Close/FIN

FIN/ACK
%o
.
&
4/47
3

CLOSING

ACK Timeout after two
segment lifetimes.

CLOSED

LAST_ACK

FIN_WAIT_2

FIN/ACK

TIME_WAIT

15

Tearing Down Connection

L\

e Either side can initiate tear down
e Send FIN signal A

* “I’'m not going to send any more
data”

FIN, SegA

e Other side can continue sending |ACK, SeqA+1

data ?

¢ Half open connection
e Must continue to acknowledge

e Acknowledging FIN

ACK

\

FIN, SeqB
¢ Acknowledge last sequence number +
1 ACK, SeqB+1

16

TCP State Diagram: Connection i‘
Teardown

CLOSED

Active openVSYN
Passive opel Close

LISTEN

SYN_RCVD

Close/FIN

ACK Timeout after two JACK
segment lifetimes

18

Outline

«

e Transport introduction

e TCP connection establishment

e Error recovery and flow control

e Making things work in TCP

e Congestion control

e Transport optimization and futures

19

A Naive Protocol

N

e Sender simply sends to the receiver whenever it has

packets.

¢ Potential problem: sender can outrun the receiver.

e Receiver too slow, runs out of buffer space, ..

e Even worse: packets can g

et lost!

‘ CACaCECa ‘

Stop and Wait

L\

» Send a packet, stop and
wait until ACK arrives
» Receiver sends
acknowledgement (ACK)
when it receives packet

* Sender waits for ACK and
timeouts if it does not
arrive within some time
period

» Simplest “Automatic
Repeat reQuest” protocol

Time

Sender

__Timeout

Receiver

Packe ¢

ACK

ii\.

21

Sender Receiver
20
Recovering from Error i‘.
o, PaCket I, PaCket 1 PaCket
s s~ sz —
8 8! oK 8! ok
£ E! Al =3
Time | F! =4 §/ =¥ v
i E ;:: acket
——Pack i~ —~Pack, :
. —=fet_| 5 —Zket | 5| ACK
E| ack £ acx g
o e =
Packet lost ACK lost Early timeout

22

How to Recognize
Retransmissions?

¢ Use sequence numbers
e both packets and acks

e Sequence # in packet is finite
- How big should it be?
e For stop and wait?

¢ One bit—won’t send seq #1
until received ACK for seq #0

23

Window Flow Control i‘

e Stop and wait flow control offers flow and error control,
but it results in poor throughput for long-delay paths
e Solution: receiver provides sender with a window that it
can fill with packets.
e The window is backed up by buffer space on receiver

e Receiver acknowledges the a packet every time a packet is
consumed and a buffer is freed

¢ Need larger sequence numbers: W, = 2™-1 window for m bits

‘I:II:II:I‘
D0 0 @O

Sender Receiver

24

Bandwidth-Delay Product

L\

RTT
Sender >
AKX
SRR
NN\
Receives AWAN \\ >

— Time =—p

Window Size

Max Throughput =

Roundtrip Time

25

Sliding Window i‘

Sender/Receiver State

Sender Receiver
Max ACK received Next seqnum Next expected Max acceptable
' ' ' !
Sender window Receiver window
I Sent & Acked D Sent Not Acked I Received & Acked D Acceptable Packet
I OK to Send D Not Usable D Not Usable

26

Window Sliding — Common Case “.

¢ On reception of new ACK
¢ Increase max ACK received and send next packet
e On reception of new in-order data packet
¢ Hand packet to application
¢ Send an ACK that acknowledges the paper
¢ Increase sequence of max acceptable packet
e But what do we do if packets are lost or reordered?
e Resultsin a gap in the sequence of received packets
e Raises two questions
¢ What feedback does receiver give to the sender?

e How and when does the sender retransmit packets
27

ACKing Strategies i‘

e Per-packet ACKs acknowledge exactly one packet

e Simple solution, but bookkeeping on sender is a bit messy
e Must keep per packet state — not too bad

e Inefficient: need ACK packet for every data packet
e Cumulative acks acknowledge all packets up to a
specific sequence number
e Maybe not as intuitive, but simple to implement
o Stalls the pipe until lost packet is retransmitted and ACKed
e Negative ACKs allow a receiver to ask for a (presumed
to be) lost packet
¢ Avoids the delay of a timeout but is not sufficient!

28

Selective Repeat Retransmissions \‘.

e Simple retransmission strategy for when receiver
acknowledges correctly received packets individually

* If packets out of order, receiver cannot hand data to application
so window does not move forward

e Sender only resends packets for which ACK not received
e Sender timer for individual unACKed packet

¢ Sender window calculation
¢ Buffer space used at receiver consists of N consecutive seq #'s

e Starts with an earliest unacknowledged packet

* Some packets in the window may have been acknowledged but packet
could not be given to application

29

Selective Repeat: Sender, Receiver Windows i‘

send_base nextsegnum alrecidy uscble, not
ack’ed yet sent
OO LT | e] e

whdow sre—4
N

(a) sender view of sequence numbers

out of order

acceptable
(buffered) but (within window)
already ack'ed

ﬂl]l]l]l]ﬂl]l]l] LTI el
yet received

wmdow size—4
N
rev_base

(b) receiver view of sequence numbers

30

Go-Back-N Recovery “.

e Strategy when receiver sends cumulative ACKs
e Send nothing for out of order packet — sender will timeout
e Otherwise sends cumulative ACK
e Sender implements Go-Back-N recovery
e Set timer upon transmission of packet
e Retransmit all unacknowledged packets upon timeout
e Performance during loss recovery
¢ Single loss can result in many packet retransmissions
¢ Timeouts are expensive — add significant delay

e Puts emphasis on simplicity of implementation
e E.g., receiver can drop non-contiguous packets (resent anyway)

31

Go-Back-N in Action “‘

sender receiver
send pkt0 \‘
rcv pkit
send pktl send ACKO
. Y, o rev phtl =
send pkiZ "\.\(J&JSJ send ACK1
send pktd
ity "
(wait) rev pki3, discard
send ACK]
rev ACKO
send pktd
ACK] rcv pkid, discard
Jovics seee VN ACKI
: rcv pkis, discard
pkt2 timeout seng Au?l!
send pki2

send pkid iy rev pki2, deliver

poabi e bl S

send (=] t rcv pi . aeliver .
\ send ACK3 WlndOW

32

Outline “

e Transport introduction

TCP connection establishment

Error recovery and flow control
Making things work in TCP
Congestion control

Transport optimization and futures

33

TCP = Go-Back-N Variant “

size =4

TCP uses a sliding window with cumulative acks
e Receiver can only return a single “ack” sequence number
e Acknowledges all bytes with a lower sequence number
e Starting point for retransmission
But: sender only retransmits one packet after timeout

e Reason: only knows that that specific packet is lost

* Network is congested = should not overload it with questionable
retransmits

e Receiver stores out of order packets
e Can be used after the sender “fills the gap”

e Error control is based on byte sequences, not packets.
e Retransmissions can be different from lost packets — Why?

34

Window Flow Control: Send Side “.

Packet Sent Packet Received

Dest_Port Dest.Port
Sequence Number
Acknowledgment

| HiFlags | Window 7|
| D_Checksum | Urgent pointer I © ChegGum | Urgent Pointer |

App write
| | | |

acknowledged sent to be sent outside window

35

Duplicate ACKs (Fast Retransmit) i‘

Basic Go-Back-N incurs timeout for every loss
e Can we do better? How about a NACK?
e Receiver sends “duplicate ack” for out of order packets
e Repeated acks for the same sequence
e Serves as a NACK — no room in header for real NACK!
When can duplicate acks occur?
e Loss
e Packet re-ordering — oops! Unnecessary retransmit
e Solution - assume re-ordering is infrequent :
e Receipt of 3 or more duplicate acks is indication of loss
e Sender does not wait for timeout to retransmit packet
¢ When does this fail?

36

Duplicate ACKs (Fast Retransmit) \‘.

L]
|
n
L !
-
-
L]
X " . «— Retransmission
| | (<} 0000 .
Sequence No " ° “ Duplicate Acks
L] (<]
|] (<]
n [}
L ! o
[] [
L o
L] [e]
L] <]
|] [*]
- o]
] (<]
- o
M Packets
Acks -
@ Time

37

How about Multiple Losses? i‘,

L]
L !
L]
:
i .
H ° Now what? - timeout
W u
L] © 0000
Sequence No u 3
L] o
L ! o
n o
L ! (=]
n o
L (=}
|] o
L] (=}
|] o
L} <]
L] (<]
| o
Ml Packets
Acks -
o Time

38

SACK i‘,

e Cumulative acks provide little information
¢ How many packets were really lost?
e Becomes a problem as windows get bigger
¢ Selective acknowledgement (SACK) essentially adds a
bitmask of packets received
¢ Implemented as a TCP option
¢ Encoded as a set of received byte ranges (max of 4
ranges/often max of 3)
¢ When to retransmit?

e Still need to deal with reordering = wait for out of order by
3pkts

39

Selective ACK (SACK)

N

L !
L]
i
s &
n
X O
L]
L]
;¢ u
L] o 0000
Sequence No = o
L] o
L} o
L] o
L} o
L ! o
L [}
| o
L] o
| o
L] (<]
L ! (<]
m o
M Packets
@Acks
Time
O “Hole”

Round-trip Time Estimation “

Wait at least one RTT before retransmitting

¢ Importance of accurate RTT estimators:
e Low RTT estimate: unneeded retransmissions
e High RTT estimate: poor throughput

RTT estimator must adapt to change in RTT
e But not too fast, or too slow!

So how do we estimate RTT?

41

Original TCP Round-trip Estimator

"N

e Round trip times 2
exponentially averaged: ,

e New RTT = (old RTT) +
(1 - a) (new sample)

e Recommended value for
a:0.8-0.9 s
¢ 0.875 for most TCP’s

¢ Retransmit timer setto (b * RTT), where b = 2

« Every time timer expires, RTO exponentially backed-off
¢ Not good at preventing spurious timeouts

e Why?

10

Jacobson’s Retransmission Timeout “,

e Key observation:
¢ At high loads, round trip variance is high
e Solution:

¢ Base RTO on RTT and standard deviation
e RTO = RTT + 4 * rttvar

e new_rttvar = 3 * dev + (1-) old_rttvar
e Dev = linear deviation

e Inappropriately named — actually smoothed linear
deviation

¢ |n practice: TOs use coarse clock, e.g., 100s of msec

43

Important Lessons i‘

e Transport service
e UDP - mostly just IP service + demultiplexing
e TCP - congestion controlled, reliable, byte stream
e Types of ARQ protocols
¢ Sliding window for high throughput
e Go-back-n = can keep link utilized (except w/ losses)
e Selective repeat > efficient loss recovery
e TCP uses go-back-n variant
e Avoid unnecessary retransmission ..
e ... and gaps in the flow (fast retransmit/recovery, SACK)

44

11

