

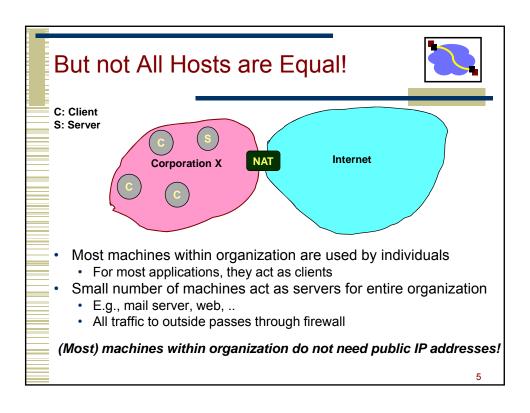
Lecture 9 – Translations
Peter Steenkiste

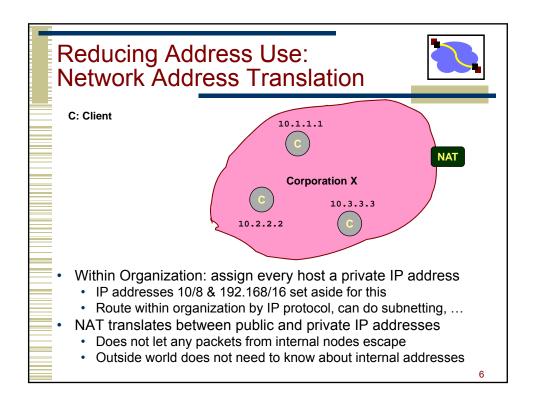
Fall 2015 www.cs.cmu.edu/~prs/15-441-F15

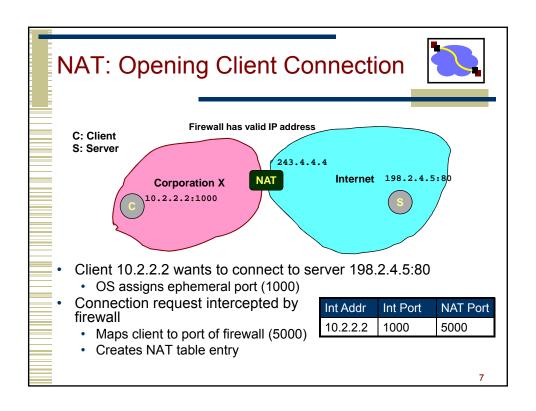
Outline

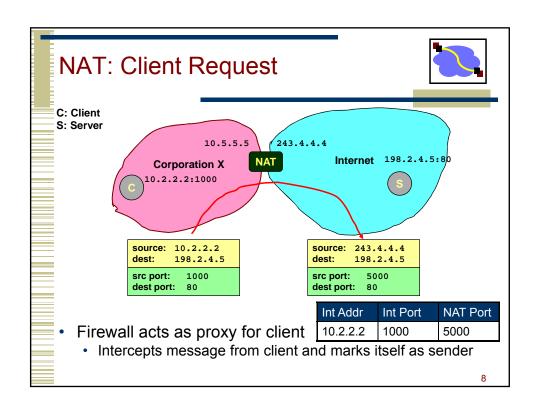
- Translation: too many names and addresses!
- NATs
- ARP
- DNS

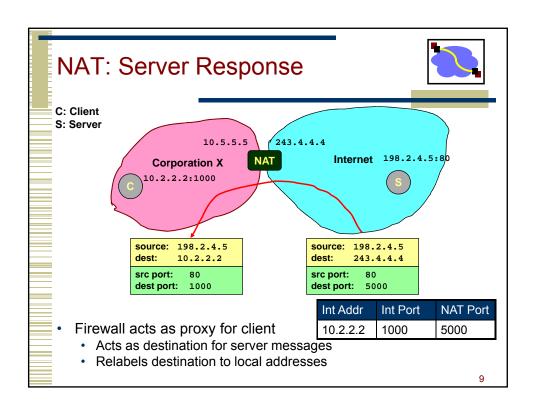
-

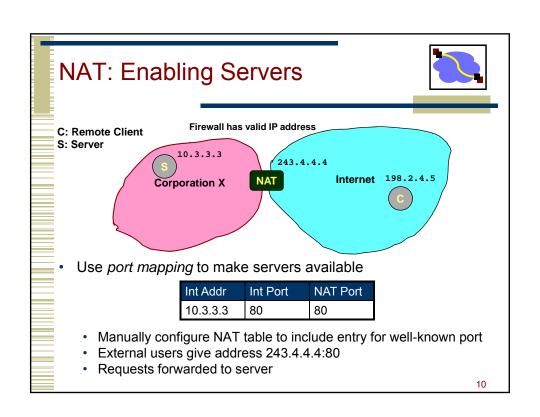

Altering the Addressing Model



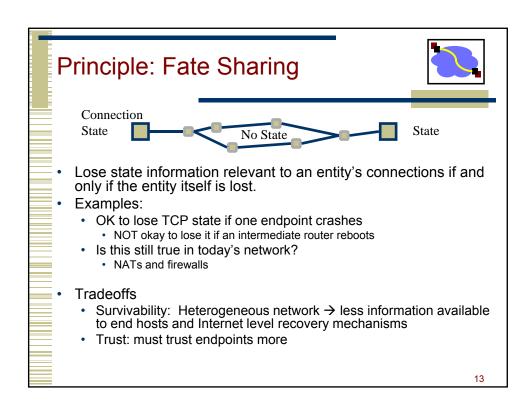

- Original IP Model: Every host has unique IP address
- Implications
 - · Any host can communicate with any other host
 - Any host can act as a server
 - Just need to know host ID and port number
- System is open complicates security
 - Any host can attack any other host
 - · Possible to forge packets
 - · Use invalid source address
- Places pressure on the address space
 - Every host requires "public" IP address

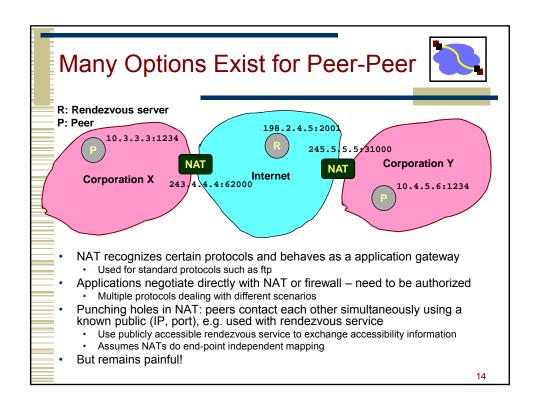

3


C: Client S: Server On the Not enough IP addresses for every host in organization Increasingly hard to get large address blocks Security Don't want every machine in organization known to outside world Want to control or monitor traffic in / out of organization



Additional NAT Benefits


- NATs already help with security
 - Hides IP addresses used in internal network
 - Easy to change ISP: only NAT box needs to have IP address
 - · Fewer registered IP addresses required
 - Basic protection against remote attack
 - · Does not expose internal structure to outside world
 - · Can control what packets come in and out of system
 - · Can reliably determine whether packet from inside or outside
- NATs have many additional benefits
 - · NAT boxes make home networking simple
 - Can be used to map between addresses from different address families, e.g, IPv4 and IPv6


11

NAT Challenges

- NAT has to be consistent during a session.
 - Mapping (hard state) must be maintained during the session
 - · Recall Goal 1 of Internet: Continue despite loss of networks or gateways
 - Recycle the mapping after the end of the session
 - · May be hard to detect
- NAT only works for certain applications.
 - · Some applications (e.g. ftp) pass IP information in payload oops
 - · Need application level gateways to do a matching translation
- NATs are a problem for peer-peer applications
 - · File sharing, multi-player games, ...
 - · Who is server?
 - · Need to "punch" hole through NAT

Outline

- Translation: too many names and addresses!
- NATs
- ARP
- DNS

15

Too Much of a Good Thing?

- Hosts have a
 - host name
 - IP address
 - MAC address
- There is a reason ..
 - Remember?
- But how do we translate?

Network

Data link

Physical

Application

Presentation
Session
Transport

IP to MAC Address Translation

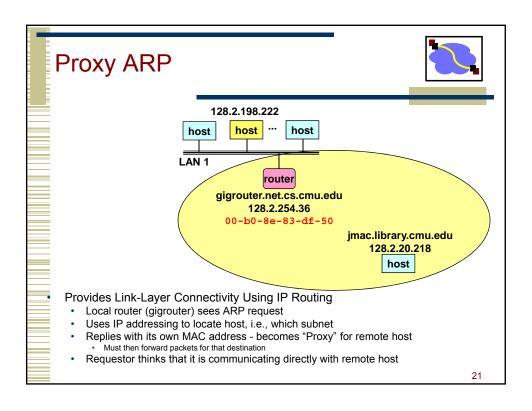
- How does one find the Ethernet address of a IP host?
- Address Resolution Protocol ARP
 - Broadcast search for IP address
 - E.g., "who-has 128.2.184.45 tell 128.2.206.138" sent to Ethernet broadcast (all FF address)
 - Destination responds (only to requester using unicast) with appropriate 48-bit Ethernet address
 - E.g, "reply 128.2.184.45 is-at 0:d0:bc:f2:18:58" sent to 0:c0:4f:d:ed:c6

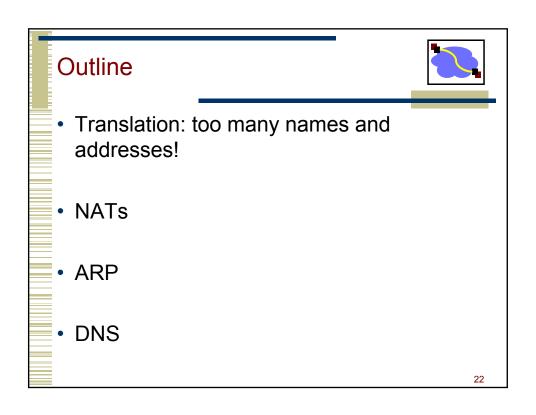
17

Caching ARP Entries

- Efficiency Concern
 - Would be very inefficient to use ARP request/reply every time need to send IP message to machine
- Each Host Maintains Cache of ARP Entries
 - Add entry to cache whenever get ARP response
 - "Soft state": set timeout of ~20 minutes

ARP Cache Example




• Show using command "arp -a"

```
Interface: 128.2.222.198 on Interface 0x1000003
  Internet Address
                        Physical Address
                                              Type
 128.2.20.218
                        00-b0-8e-83-df-50
                                              dynamic
 128.2.102.129
                        00-b0-8e-83-df-50
                                              dynamic
 128.2.194.66
                        00-02-b3-8a-35-bf
                                              dynamic
 128.2.198.34
                        00-06-5b-f3-5f-42
                                              dynamic
                        00-90-27-3c-41-11
                                              dynamic
 128.2.203.3
 128.2.203.61
                        08-00-20-a6-ba-2b
                                              dynamic
 128.2.205.192
                        00-60-08-1e-9b-fd
                                              dynamic
 128.2.206.125
                        00-d0-b7-c5-b3-f3
                                              dynamic
 128.2.206.139
                        00-a0-c9-98-2c-46
                                              dynamic
 128.2.222.180
                        08-00-20-a6-ba-c3
                                              dynamic
 128.2.242.182
                        08-00-20-a7-19-73
                                              dynamic
 128.2.254.36
                        00-b0-8e-83-df-50
                                              dynamic
```

19

CMU's Internal Network Structure 128.2.198.222 Forwarding Table Entry 128.2.20.0/23 via 128.2.255.20, Vlan255 host host host LAN 1 router router gigrouter.net.cs.cmu.edu hl-vl255.gw.cmu.edu 128.2.254.36 128.2.255.20 jmac.library.cmu.edu 128.2.20.218 host CMU Uses Routing Internally · Maintains forwarding tables using OSPF Most CMU hosts cannot be reached at link layer

Naming

- How do we efficiently locate resources?
 - DNS: name → IP address
- Challenge
 - · How do we scale this to the wide area?

23

Obvious Solutions (1)

Why not centralize DNS?

- · Distant centralized database
 - Traffic volume
- Single point of failure
- Single point of update
- Single point of control
- Doesn't scale!

Obvious Solutions (2)

Why not use /etc/hosts?

- Original Name to Address Mapping
 - Flat namespace
 - /etc/hosts keeps track of the mappings
 - SRI kept main copy
 - Downloaded regularly
- Count of hosts was increasing: machine per domain → machine per user
 - · Many more downloads
 - · Many more updates

25

Domain Name System Goals

- Basically a wide-area distributed database
- Scalability
- Decentralized maintenance
- Robustness
- Global scope
 - Names mean the same thing everywhere
- Don't need
 - Atomicity
 - Strong consistency

Programmer's View of DNS

 Conceptually, programmers can view the DNS database as a collection of millions of host entry structures:

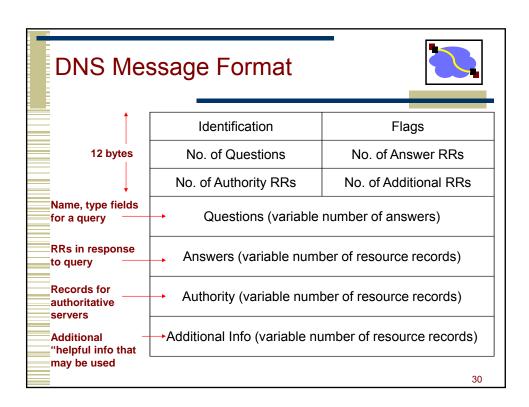
- Functions for retrieving host entries from DNS:
 - getaddrinfo: query key is a DNS host name.
 - getnameinfo: query key is an IP address.

27

DNS Records

RR format: (class, name, value, type, ttl)

- · DB contains tuples called resource records (RRs)
 - Classes = Internet (IN), Chaosnet (CH), etc.
 - · Each class defines value associated with type

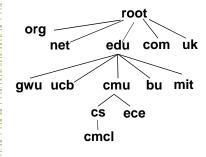

FOR IN class:

- Type=A
 - name is hostname
 - value is IP address
- Type=NS
 - name is domain (e.g. foo.com)
 - value is name of authoritative name server for this domain
- Type=CNAME
 - name is an alias name for some "canonical" (the real) name
 - value is canonical name
- Type=MX
 - value is hostname of mailserver associated with name

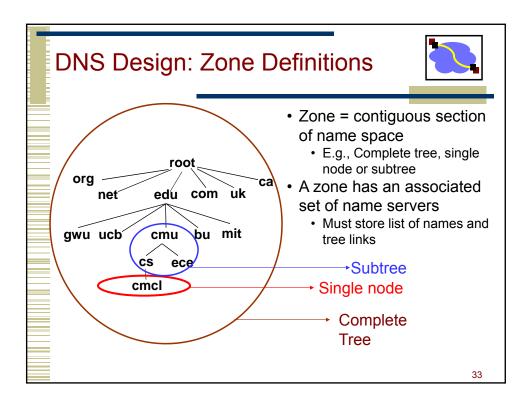
Properties of DNS Host Entries

- Different kinds of mappings are possible:
 - Simple case: 1-1 mapping between domain name and IP addr:
 - kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242
 - Multiple domain names maps to the same IP address:
 - eecs.mit.edu and cs.mit.edu both map to 18.62.1.6
 - Single domain name maps to multiple IP addresses:
 - aol.com and www.aol.com map to multiple IP addrs.
 - Some valid domain names don't map to any IP address:
 - for example: cmcl.cs.cmu.edu

DNS Header Fields



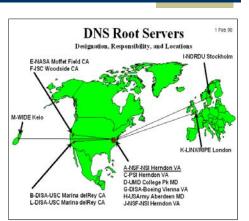
- Identification
 - Used to match up request/response
- Flags
 - 1-bit to mark query or response
 - 1-bit to mark authoritative or not
 - 1-bit to request recursive resolution
 - 1-bit to indicate support for recursive resolution


31

DNS Design: Hierarchy Definitions

- Each node in hierarchy stores a list of names that end with same suffix
 - Suffix = path up tree
- E.g., given this tree, where would following be stored:
 - Fred.com
 - Fred.edu
 - Fred.cmu.edu
 - Fred.cmcl.cs.cmu.edu
 - Fred.cs.mit.edu

DNS Design: Management



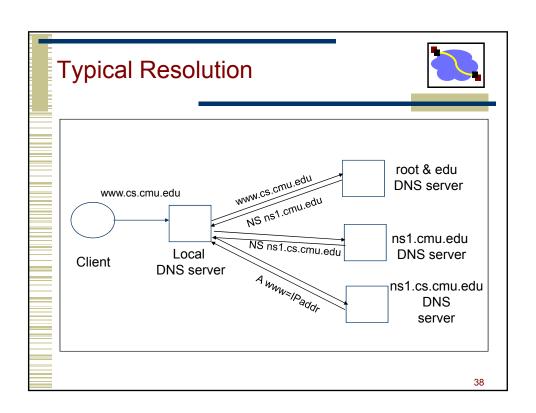
- Zones are created by convincing owner node (parent) to create/delegate a subzone
 - Records within zone stored multiple redundant name servers
 - Primary/master name server updated manually
 - Secondary/redundant servers updated by zone transfer of name space
 - Zone transfer is a bulk transfer of the "configuration" of a DNS server – uses TCP to ensure reliability
- Example:
 - CS.CMU.EDU created by CMU.EDU administrators
 - Who creates CMU.EDU or .EDU?

DNS: Root Name Servers

- · Responsible for "root" zone
- Approx. 13 root name servers worldwide
 - Currently {a-m}.rootservers.net
 - · Very well protected
- Local name servers contact root servers when they cannot resolve a name
 - Configured with well-known root servers
 - Newer picture → www.rootservers.org

35

Root Zone



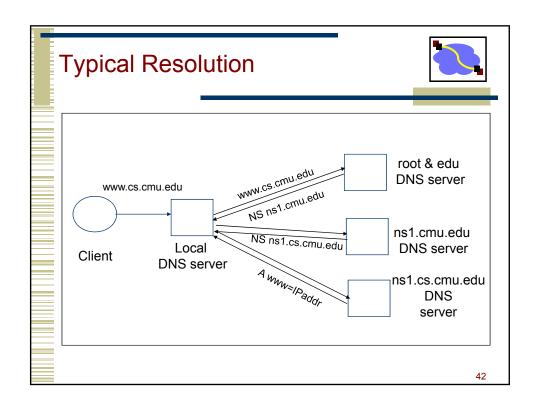
- Generic Top Level Domains (gTLD) = .com, .net, .org, etc...
- Country Code Top Level Domain (ccTLD) = .us, .ca, .fi, .uk, etc...
- Root server ({a-m}.root-servers.net) also used to cover gTLD domains
 - Load on root servers was growing quickly!
 - Moving .com, .net, .org off root servers was clearly necessary to reduce load → done Aug 2000

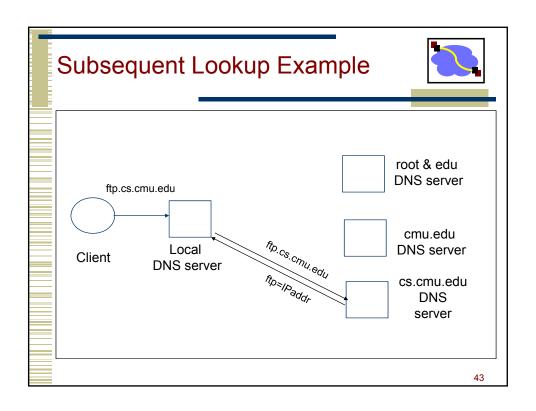
Servers/Resolvers

- Each host has a resolver
 - Typically a library that applications can link to
 - Local name servers hand-configured (e.g. /etc/resolv.conf)
- Name servers
 - Either responsible for some zone or...
 - Local servers
 - Do lookup of distant host names for local hosts
 - · Typically answer queries about local zone

Typical Resolution: Steps

- · Steps for resolving www.cmu.edu
 - Application calls gethostbyname() (RESOLVER)
 - Resolver contacts local name server (S₁)
 - S₁ queries root server (S₂) for (<u>www.cmu.edu</u>)
 - S₂ returns NS record for cmu.edu (S₃)
 - What about A record for S₃?
 - This is what the additional information section is for (PREFETCHING)
 - S₁ queries S₃ for <u>www.cmu.edu</u>
 - S₃ returns A record for www.cmu.edu


39


Lookup Methods Recursive query: root name server Server goes out and searches for more info (recursive) iterated query Only returns final answer or "not found" Iterative query: Server responds with as much as it knows (iterative) intermediate name server local name server "I don't know this name, dns.eurecom.fr dns.umass.edu but ask this server" 6 authoritative name Workload impact on choice? server dns.cs.umass.edu Local server typically does recursive Root/distant server does requesting host iterative aia.cs.umass.edu surf.eurecom.fr

Workload and Caching

- Are all servers/names likely to be equally popular?
 - Why might this be a problem? How can we solve this problem?
- DNS responses are cached
 - · Quick response for repeated translations
 - Other queries may reuse some parts of lookup
- DNS negative queries are cached
 - · Don't have to repeat past mistakes, e.g., misspellings
- Cached data periodically times out
 - · Lifetime (TTL) of data controlled by owner of data
 - TTL passed with every record
- Responses can include additional information
 - Often used for prefetching, e.g., CNAME/MX/NS records

Reliability

- DNS servers are replicated
 - Name service available if ≥ one replica is up
 - · Queries can be load balanced between replicas
 - · Queries return multiple A records
- UDP used for queries
 - Need reliability → must implement this on top of UDP!
 - Why not just use TCP?
- Try alternate servers on timeout
 - · Exponential backoff when retrying same server
- Same identifier for all queries
 - · Client does not care which server responds

Mail Addresses

- MX records point to mail exchanger for a name
 - · E.g. mail.acm.org is MX for acm.org
- Addition of MX record type proved to be a challenge
 - How to get mail programs to lookup MX record for mail delivery?
 - · Needed critical mass of such mailers

45

Tracing Hierarchy (1)

- Dig Program
 - · Allows querying of DNS system
 - · Use flags to find name server (NS)
 - · Disable recursion so that operates one step at a time

unix> dig +norecurse @a.root-servers.net NS kittyhawk.cmcl.cs.cmu.edu ;; AUTHORITY SECTION: edu. 172800 IN NS L3.NSTLD.COM. edu. 172800 IN NS D3.NSTLD.COM. 172800 IN NS A3.NSTLD.COM. edu. E3.NSTLD.COM. edu. 172800 IN NS 172800 IN NS C3.NSTLD.COM. 172800 IN NS F3.NSTLD.COM. edu. edu. 172800 IN NS G3.NSTLD.COM. edu. 172800 IN NS B3.NSTLD.COM. 172800 IN NS M3.NSTLD.COM. edu.

DNS Summary

- Motivations → large distributed database
 - Scalability
 - Independent update
 - Robustness
- · Hierarchical database structure
 - Zones
 - · How is a lookup done
- Caching/prefetching and TTLs
- Reverse name lookup
- What are the steps to creating your own domain?