
1

15-441 Computer Networking

Lecture 9 – Translations
Peter Steenkiste

Fall 2015

www.cs.cmu.edu/~prs/15-441-F15

15-441
15-641

Outline

• Translation: too many names and
addresses!

• NATs

• ARP

• DNS

2

2

Altering the Addressing Model

• Original IP Model: Every host has unique IP address
• Implications

• Any host can communicate with any other host
• Any host can act as a server

• Just need to know host ID and port number

• System is open – complicates security
• Any host can attack any other host
• Possible to forge packets

• Use invalid source address

• Places pressure on the address space
• Every host requires “public” IP address

3

Challenges When Connecting
to Public Internet

• Not enough IP addresses for every host in organization
• Increasingly hard to get large address blocks

• Security
• Don’t want every machine in organization known to outside world

• Want to control or monitor traffic in / out of organization
4

InternetCorporation X

C

C

C

S

???

C: Client
S: Server

3

But not All Hosts are Equal!

• Most machines within organization are used by individuals
• For most applications, they act as clients

• Small number of machines act as servers for entire organization
• E.g., mail server, web, ..
• All traffic to outside passes through firewall

5

(Most) machines within organization do not need public IP addresses!

InternetCorporation X

C

C

C

S

NAT

C: Client
S: Server

Reducing Address Use:
Network Address Translation

• Within Organization: assign every host a private IP address
• IP addresses 10/8 & 192.168/16 set aside for this
• Route within organization by IP protocol, can do subnetting, …

• NAT translates between public and private IP addresses
• Does not let any packets from internal nodes escape
• Outside world does not need to know about internal addresses

6

Corporation X

C

C

C

C: Client
10.1.1.1

10.2.2.2

10.3.3.3

NAT

4

NAT: Opening Client Connection

• Client 10.2.2.2 wants to connect to server 198.2.4.5:80
• OS assigns ephemeral port (1000)

• Connection request intercepted by
firewall
• Maps client to port of firewall (5000)
• Creates NAT table entry

7

InternetCorporation X

C

NAT

C: Client
S: Server

10.2.2.2:1000 S

198.2.4.5:80

243.4.4.4

Int Addr Int Port NAT Port

10.2.2.2 1000 5000

Firewall has valid IP address

NAT: Client Request

• Firewall acts as proxy for client
• Intercepts message from client and marks itself as sender

8

InternetCorporation X

C

NAT

C: Client
S: Server

10.2.2.2:1000 S

198.2.4.5:80

243.4.4.410.5.5.5

source: 10.2.2.2
dest: 198.2.4.5

src port: 1000
dest port: 80

source: 243.4.4.4
dest: 198.2.4.5

src port: 5000
dest port: 80

Int Addr Int Port NAT Port

10.2.2.2 1000 5000

5

NAT: Server Response

• Firewall acts as proxy for client
• Acts as destination for server messages
• Relabels destination to local addresses

9

InternetCorporation X

C

NAT

C: Client
S: Server

10.2.2.2:1000 S

198.2.4.5:80

243.4.4.410.5.5.5

source: 198.2.4.5
dest: 243.4.4.4

src port: 80
dest port: 5000

source: 198.2.4.5
dest: 10.2.2.2

src port: 80
dest port: 1000

Int Addr Int Port NAT Port

10.2.2.2 1000 5000

NAT: Enabling Servers

• Use port mapping to make servers available

• Manually configure NAT table to include entry for well-known port
• External users give address 243.4.4.4:80
• Requests forwarded to server

10

InternetCorporation X NAT

C: Remote Client
S: Server

10.3.3.3

C

198.2.4.5

243.4.4.4

Int Addr Int Port NAT Port

10.3.3.3 80 80

Firewall has valid IP address

S

6

Additional NAT Benefits

• NATs already help with security
• Hides IP addresses used in internal network

• Easy to change ISP: only NAT box needs to have IP address
• Fewer registered IP addresses required

• Basic protection against remote attack
• Does not expose internal structure to outside world
• Can control what packets come in and out of system
• Can reliably determine whether packet from inside or outside

• NATs have many additional benefits
• NAT boxes make home networking simple
• Can be used to map between addresses from different address families,

e.g, IPv4 and IPv6

11

NAT Challenges

• NAT has to be consistent during a session.
• Mapping (hard state) must be maintained during the session

• Recall Goal 1 of Internet: Continue despite loss of networks or gateways

• Recycle the mapping after the end of the session
• May be hard to detect

• NAT only works for certain applications.
• Some applications (e.g. ftp) pass IP information in payload - oops

• Need application level gateways to do a matching translation

• NATs are a problem for peer-peer applications
• File sharing, multi-player games, …

• Who is server?

• Need to “punch” hole through NAT

12

7

Principle: Fate Sharing

• Lose state information relevant to an entity’s connections if and
only if the entity itself is lost.

• Examples:
• OK to lose TCP state if one endpoint crashes

• NOT okay to lose it if an intermediate router reboots
• Is this still true in today’s network?

• NATs and firewalls

• Tradeoffs
• Survivability: Heterogeneous network  less information available

to end hosts and Internet level recovery mechanisms
• Trust: must trust endpoints more

13

Connection
State StateNo State

Many Options Exist for Peer-Peer

• NAT recognizes certain protocols and behaves as a application gateway
• Used for standard protocols such as ftp

• Applications negotiate directly with NAT or firewall – need to be authorized
• Multiple protocols dealing with different scenarios

• Punching holes in NAT: peers contact each other simultaneously using a
known public (IP, port), e.g. used with rendezvous service

• Use publicly accessible rendezvous service to exchange accessibility information
• Assumes NATs do end-point independent mapping

• But remains painful!
14

InternetCorporation X

NAT

10.3.3.3:1234

243.4.4.4:62000

P
Corporation YNAT

R

198.2.4.5:2001

10.4.5.6:1234
P

R: Rendezvous server
P: Peer

245.5.5.5:31000

8

Outline

• Translation: too many names and
addresses!

• NATs

• ARP

• DNS

15

Too Much of a Good Thing?

• Hosts have a
• host name

• IP address

• MAC address

• There is a reason ..
• Remember?

• But how do we translate?

16

Application

Presentation

Session

Transport

Network

Data link

Physical

9

17

IP to MAC Address Translation

• How does one find the Ethernet address of
a IP host?

• Address Resolution Protocol - ARP
• Broadcast search for IP address

• E.g., “who-has 128.2.184.45 tell 128.2.206.138” sent
to Ethernet broadcast (all FF address)

• Destination responds (only to requester using
unicast) with appropriate 48-bit Ethernet
address
• E.g, “reply 128.2.184.45 is-at 0:d0:bc:f2:18:58” sent

to 0:c0:4f:d:ed:c6

18

Caching ARP Entries

• Efficiency Concern
• Would be very inefficient to use ARP

request/reply every time need to send IP
message to machine

• Each Host Maintains Cache of ARP Entries
• Add entry to cache whenever get ARP

response

• “Soft state”: set timeout of ~20 minutes

10

19

ARP Cache Example

• Show using command “arp -a”
Interface: 128.2.222.198 on Interface 0x1000003

Internet Address Physical Address Type
128.2.20.218 00-b0-8e-83-df-50 dynamic
128.2.102.129 00-b0-8e-83-df-50 dynamic
128.2.194.66 00-02-b3-8a-35-bf dynamic
128.2.198.34 00-06-5b-f3-5f-42 dynamic
128.2.203.3 00-90-27-3c-41-11 dynamic
128.2.203.61 08-00-20-a6-ba-2b dynamic
128.2.205.192 00-60-08-1e-9b-fd dynamic
128.2.206.125 00-d0-b7-c5-b3-f3 dynamic
128.2.206.139 00-a0-c9-98-2c-46 dynamic
128.2.222.180 08-00-20-a6-ba-c3 dynamic
128.2.242.182 08-00-20-a7-19-73 dynamic
128.2.254.36 00-b0-8e-83-df-50 dynamic

20

CMU’s Internal Network Structure

• CMU Uses Routing Internally
• Maintains forwarding tables using OSPF
• Most CMU hosts cannot be reached at link layer

host host host

LAN 1

...

router

128.2.198.222

gigrouter.net.cs.cmu.edu
128.2.254.36

host

jmac.library.cmu.edu
128.2.20.218

Forwarding Table Entry
O 128.2.20.0/23 via 128.2.255.20, Vlan255

router

hl-vl255.gw.cmu.edu
128.2.255.20

11

21

Proxy ARP

• Provides Link-Layer Connectivity Using IP Routing
• Local router (gigrouter) sees ARP request
• Uses IP addressing to locate host, i.e., which subnet
• Replies with its own MAC address - becomes “Proxy” for remote host

• Must then forward packets for that destination

• Requestor thinks that it is communicating directly with remote host

host host host

LAN 1

...

router

128.2.198.222

gigrouter.net.cs.cmu.edu
128.2.254.36

00-b0-8e-83-df-50

host

jmac.library.cmu.edu
128.2.20.218

Outline

• Translation: too many names and
addresses!

• NATs

• ARP

• DNS

22

12

23

Naming

• How do we efficiently locate resources?
• DNS: name  IP address

• Challenge
• How do we scale this to the wide area?

24

Obvious Solutions (1)

Why not centralize DNS?

• Distant centralized database
• Traffic volume

• Single point of failure

• Single point of update

• Single point of control

• Doesn’t scale!

13

25

Obvious Solutions (2)

Why not use /etc/hosts?
• Original Name to Address Mapping

• Flat namespace
• /etc/hosts keeps track of the mappings
• SRI kept main copy
• Downloaded regularly

• Count of hosts was increasing: machine per
domain  machine per user
• Many more downloads
• Many more updates

26

Domain Name System Goals

• Basically a wide-area distributed database
• Scalability
• Decentralized maintenance
• Robustness
• Global scope

• Names mean the same thing everywhere

• Don’t need
• Atomicity
• Strong consistency

14

27

Programmer’s View of DNS

• Conceptually, programmers can view the
DNS database as a collection of millions of
host entry structures:

• Functions for retrieving host entries from
DNS:
•getaddrinfo: query key is a DNS host name.
•getnameinfo: query key is an IP address.

/* DNS host entry structure */
struct addrinfo {

int ai_family; /* host address type (AF_INET) */
size_t ai_addrlen; /* length of an address, in bytes */
struct sockaddr *ai_addr; /* address! */
char *ai_canonname; /* official domain name of host */
struct addrinfo *ai_next; /* other entries for host */

};

28

DNS Records

RR format: (class, name, value, type, ttl)

• DB contains tuples called resource records (RRs)
• Classes = Internet (IN), Chaosnet (CH), etc.
• Each class defines value associated with type

FOR IN class:

• Type=A
• name is hostname

• value is IP address

• Type=NS
• name is domain (e.g. foo.com)

• value is name of authoritative name
server for this domain

• Type=CNAME
• name is an alias name for some

“canonical” (the real) name

• value is canonical name

• Type=MX
• value is hostname of mailserver

associated with name

15

29

Properties of DNS Host Entries

• Different kinds of mappings are possible:
• Simple case: 1-1 mapping between domain name and

IP addr:
• kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242

• Multiple domain names maps to the same IP address:
• eecs.mit.edu and cs.mit.edu both map to 18.62.1.6

• Single domain name maps to multiple IP addresses:
• aol.com and www.aol.com map to multiple IP addrs.

• Some valid domain names don’t map to any IP
address:
• for example: cmcl.cs.cmu.edu

30

DNS Message Format

Identification

No. of Questions

No. of Authority RRs

Questions (variable number of answers)

Answers (variable number of resource records)

Authority (variable number of resource records)

Additional Info (variable number of resource records)

Flags

No. of Answer RRs

No. of Additional RRs

Name, type fields
for a query

RRs in response
to query

Records for
authoritative
servers

Additional
“helpful info that
may be used

12 bytes

16

31

DNS Header Fields

• Identification
• Used to match up request/response

• Flags
• 1-bit to mark query or response

• 1-bit to mark authoritative or not

• 1-bit to request recursive resolution

• 1-bit to indicate support for recursive resolution

32

DNS Design: Hierarchy Definitions

root

edunet
org

ukcom

gwu ucb cmu bu mit

cs ece

cmcl

• Each node in hierarchy
stores a list of names that
end with same suffix

• Suffix = path up tree
• E.g., given this tree, where

would following be stored:
• Fred.com
• Fred.edu
• Fred.cmu.edu
• Fred.cmcl.cs.cmu.edu
• Fred.cs.mit.edu

17

33

DNS Design: Zone Definitions

root

edunet
org

ukcom
ca

gwu ucb cmu bu mit

cs ece

cmcl Single node
Subtree

Complete
Tree

• Zone = contiguous section
of name space

• E.g., Complete tree, single
node or subtree

• A zone has an associated
set of name servers

• Must store list of names and
tree links

34

DNS Design: Management

• Zones are created by convincing owner node
(parent) to create/delegate a subzone
• Records within zone stored multiple redundant

name servers
• Primary/master name server updated manually
• Secondary/redundant servers updated by zone

transfer of name space
• Zone transfer is a bulk transfer of the “configuration” of a

DNS server – uses TCP to ensure reliability

• Example:
• CS.CMU.EDU created by CMU.EDU administrators
• Who creates CMU.EDU or .EDU?

18

35

DNS: Root Name Servers

• Responsible for “root” zone

• Approx. 13 root name servers
worldwide
• Currently {a-m}.root-

servers.net

• Very well protected

• Local name servers contact
root servers when they cannot
resolve a name
• Configured with well-known

root servers

• Newer picture  www.root-
servers.org

36

Root Zone

• Generic Top Level Domains (gTLD) = .com,
.net, .org, etc…

• Country Code Top Level Domain (ccTLD) =
.us, .ca, .fi, .uk, etc…

• Root server ({a-m}.root-servers.net) also
used to cover gTLD domains
• Load on root servers was growing quickly!
• Moving .com, .net, .org off root servers was

clearly necessary to reduce load  done Aug
2000

19

37

Servers/Resolvers

• Each host has a resolver
• Typically a library that applications can link to

• Local name servers hand-configured (e.g.
/etc/resolv.conf)

• Name servers
• Either responsible for some zone or…

• Local servers
• Do lookup of distant host names for local hosts

• Typically answer queries about local zone

38

Typical Resolution

Client
Local

DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

ns1.cs.cmu.edu
DNS

server

20

39

Typical Resolution: Steps

• Steps for resolving www.cmu.edu
• Application calls gethostbyname() (RESOLVER)

• Resolver contacts local name server (S1)

• S1 queries root server (S2) for (www.cmu.edu)

• S2 returns NS record for cmu.edu (S3)

• What about A record for S3?
• This is what the additional information section is for (PREFETCHING)

• S1 queries S3 for www.cmu.edu

• S3 returns A record for www.cmu.edu

40

Lookup Methods

Recursive query:
• Server goes out and

searches for more info
(recursive)

• Only returns final answer
or “not found”

Iterative query:
• Server responds with as

much as it knows
(iterative)

• “I don’t know this name,
but ask this server”

Workload impact on choice?
• Local server typically does

recursive
• Root/distant server does

iterative requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2

3
4

5 6authoritative name
server

dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

21

41

Workload and Caching

• Are all servers/names likely to be equally popular?
• Why might this be a problem? How can we solve this problem?

• DNS responses are cached
• Quick response for repeated translations

• Other queries may reuse some parts of lookup

• DNS negative queries are cached
• Don’t have to repeat past mistakes, e.g., misspellings

• Cached data periodically times out
• Lifetime (TTL) of data controlled by owner of data

• TTL passed with every record

• Responses can include additional information
• Often used for prefetching, e.g., CNAME/MX/NS records

42

Typical Resolution

Client
Local

DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

ns1.cs.cmu.edu
DNS

server

22

43

Subsequent Lookup Example

Client
Local

DNS server

root & edu
DNS server

cmu.edu
DNS server

cs.cmu.edu
DNS

server

ftp.cs.cmu.edu

44

Reliability

• DNS servers are replicated
• Name service available if ≥ one replica is up

• Queries can be load balanced between replicas

• Queries return multiple A records

• UDP used for queries
• Need reliability  must implement this on top of UDP!

• Why not just use TCP?

• Try alternate servers on timeout
• Exponential backoff when retrying same server

• Same identifier for all queries
• Client does not care which server responds

23

45

Mail Addresses

• MX records point to mail exchanger for a
name
• E.g. mail.acm.org is MX for acm.org

• Addition of MX record type proved to be a
challenge
• How to get mail programs to lookup MX record

for mail delivery?

• Needed critical mass of such mailers

46

Tracing Hierarchy (1)

• Dig Program
• Allows querying of DNS system
• Use flags to find name server (NS)
• Disable recursion so that operates one step at a time

• All .edu names handled by set of servers

unix> dig +norecurse @a.root-servers.net NS kittyhawk.cmcl.cs.cmu.edu

;; AUTHORITY SECTION:
edu. 172800 IN NS L3.NSTLD.COM.
edu. 172800 IN NS D3.NSTLD.COM.
edu. 172800 IN NS A3.NSTLD.COM.
edu. 172800 IN NS E3.NSTLD.COM.
edu. 172800 IN NS C3.NSTLD.COM.
edu. 172800 IN NS F3.NSTLD.COM.
edu. 172800 IN NS G3.NSTLD.COM.
edu. 172800 IN NS B3.NSTLD.COM.
edu. 172800 IN NS M3.NSTLD.COM.

24

47

DNS Summary

• Motivations  large distributed database
• Scalability
• Independent update
• Robustness

• Hierarchical database structure
• Zones
• How is a lookup done

• Caching/prefetching and TTLs
• Reverse name lookup
• What are the steps to creating your own

domain?

