

Outline • IP protocol • IPv6 • Tunnels

IPv4 Header Fields

- Identifier, flags, fragment offset → used for fragmentation
- · Time to live
 - Must be decremented at each router
 - · Packets with TTL=0 are thrown away
 - Ensure packets exit the network
- Protocol
 - · Demultiplexing to higher layer protocols
 - TCP = 6, ICMP = 1, UDP = 17...
- Header checksum
 - · Ensures some degree of header integrity
 - Relatively weak 16 bit
- Source and destination IP addresses
- Options
 - · E.g. Source routing, record route, etc.
 - · Performance issues
 - · Poorly supported

5

IP Delivery Model

- Best effort service
 - · Network will do its best to get packet to destination
- Does NOT guarantee:
 - · Any maximum latency or even ultimate success
 - · Sender will be informed if packet doesn't make it
 - · Packets will arrive in same order sent
 - · Just one copy of packet will arrive
 - Implications
 - Scales very well (really, it does)
 - · Higher level protocols must make up for shortcomings
 - Reliably delivering ordered sequence of bytes → TCP
 - Some services not feasible (or hard)
 - · Latency or bandwidth guarantees

- Every network has own Maximum Transmission Unit (MTU)
 - Largest IP datagram it can carry within its own packet frame
 E.g., Ethernet is 1500 bytes
 - · Don't know MTUs of all intermediate networks in advance
- IP Solution
 - · When hit network with small MTU, router fragments packet
 - · Destination host reassembles the paper why?

7

Fragmentation Related Fields

- Length
 - Length of IP fragment
- Identification
 - · To match up with other fragments
- Flags
 - Don't fragment flag
 - · More fragments flag
- Fragment offset
 - · Where this fragment lies in entire IP datagram
 - Measured in 8 octet units (13 bit field)

Fragmentation is Harmful

- · Uses resources poorly
 - · Forwarding costs per packet
 - · Best if we can send large chunks of data
 - · Worst case: packet just bigger than MTU
- Poor end-to-end performance
 - · Loss of a fragment
- Path MTU discovery protocol → determines minimum MTU along route
 - · Uses ICMP error messages
- Common theme in system design
 - · Assure correctness by implementing complete protocol
 - · Optimize common cases to avoid full complexity

11

Internet Control Message Protocol (ICMP)

- · Short messages used to send error & other control information
- Examples
 - · Ping request / response
 - · Can use to check whether remote host reachable
 - · Destination unreachable
 - · Indicates how packet got & why couldn't go further
 - Flow control
 - · Slow down packet delivery rate
 - Redirect
 - · Suggest alternate routing path for future messages
 - · Router solicitation / advertisement
 - · Helps newly connected host discover local router
 - Timeout
 - · Packet exceeded maximum hop limit

Important Concepts

- Base-level protocol (IP) provides minimal service level
 - · Allows highly decentralized implementation
 - · Each step involves determining next hop
 - · Most of the work at the endpoints
- ICMP provides low-level error reporting
- IP forwarding → global addressing, alternatives, lookup tables
- IP addressing → hierarchical, CIDR
- IP service → best effort, simplicity of routers
- IP packets → header fields, fragmentation, ICMP

17

Outline

- IP protocol
- IPv6
- Tunnels

IPv6 Autoconfiguration

- Serverless ("Stateless"). No manual config at all.
 - · Only configures addressing items, NOT other host things
 - · If you want that, use DHCP.
- Link-local address
 - 1111 1110 10 :: 64 bit interface ID (usually from Ethernet addr)
 - · (fe80::/64 prefix)
 - Uniqueness test ("anyone using this address?")
 - Router contact (solicit, or wait for announcement)
 - · Contains globally unique prefix
 - Usually: Concatenate this prefix with local ID → globally unique IPv6 ID
- DHCP took some of the wind out of this, but nice for "zero-conf" (many OSes now do this for both v4 and v6)

21

Fast Path versus Slow Path

- Common case: Switched in silicon ("fast path")
 - Almost everything
- Weird cases: Handed to CPU ("slow path", or "process switched")
 - Fragmentation
 - TTL expiration (traceroute)
 - · IP option handling
- Slow path is evil in today's environment
 - "Christmas Tree" attack sets weird IP options, bits, and overloads router.
 - · Developers cannot (really) use things on the slow path
 - · Slows down their traffic not good for business
 - If it became popular, they'd be in the soup!

IPv6 Header Cleanup: Options

- 32 IPv4 options → variable length header
 - Rarely used
 - No development / many hosts/routers do not support
 - Worse than useless: Packets w/options often even get dropped!
 - Processed in "slow path".
- Pv6 options: "Next header" pointer
 - · Combines "protocol" and "options" handling
 - Next header: "TCP", "UDP", etc.
 - · Extensions header: Chained together
 - Makes it easy to implement host-based options
 - One value "hop-by-hop" examined by intermediate routers
 - E.g., "source route" implemented only at intermediate hops

23

IPv6 Header Cleanup: "no"

- No checksum
 - Motivation was efficiency: If packet corrupted at hop 1, don't waste b/w transmitting on hops 2..N.
 - Useful when corruption frequent, b/w expensive
 - Today: corruption is rare, bandwidth is cheap
- No fragmentation
 - Router discard packets, send ICMP "Packet Too Big"
 → host does MTU discovery and fragments
 - Reduced packet processing and network complexity.
 - Increased MTU a boon to application writers
 - Hosts can still fragment using fragmentation header.
 Routers don't deal with it any more.

Migration from IPv4 to IPv6

- Interoperability with IP v4 is necessary for incremental deployment.
- Combination of mechanisms:
 - Dual stack operation: IP v6 nodes support both address types
 - Tunnel IP v6 packets through IP v4 clouds
 - IPv4-IPv6 translation at edge of network
 - NAT must not only translate addresses but also translate between IPv4 and IPv6 protocols
 - IPv6 addresses based on IPv4 no benefit!
 - More on NATs and tunnels in the next lecture

25

Outline

- IP protocol
- IPv6
- Tunnels

Motivation

There are many cases where not all routers have the same features or consistent state

- An experimental IP feature is only selectively deployed – how do we use this feature e-e?
 - E.g., IP multicast
- A few are using a protocol other than IPv4 how can they communicate?
 - E.g., incremental deployment of IPv6
- I am traveling with a CMU laptop how can I can I keep my CMU IP address?
 - · E.g., must have CMU address to use services

27

Tunneling Force a packet to go to a IP1 specific point in the network. · Cannot rely on routers on regular path Achieved by adding an extra IP header to the packet with a new destination address. IP2 Similar to putting a letter in another envelope · preferable to IP source routing Used increasingly to deal with special routing requirements or new features. Mobile IP,... Data · Multicast, IPv6, research, ..

Tunneling Applications

- Virtual private networks.
 - · Connect subnets of a corporation using IP tunnels
 - Often combined with IP Sec (later)
- Support for new or unusual protocols.
 - Routers that support the protocols use tunnels to "bypass" routers that do not support it
 - E.g. multicast, IPv6 (!)
- Force packets to follow non-standard routes.
 - · Routing is based on outer-header
 - E.g. mobile IP (later)

Overlay Networks

- A network "on top of the network".
 - E.g., initial Internet deployment
 - · Internet routers connected via phone lines
 - · An overlay on the phone network
 - Tunnels between nodes on a current network
- Examples: IPv6 "6bone", multicast "Mbone".
- But not limited to IP-layer protocols...
 - Peer-to-peer networks, anonymising overlays
 - · Application layer multicast
 - Improve routing, e.g. work around route failures

Important Concepts

- IP has a very simple service model
- IPv4 is a simple protocol, but there are issues
 - 32 bit address space is too small
 - Some messy features, e.g., fragmentation
 - Very simple "control" protocol
- NATs change to Internet addressing model
 - Have moved away from "everyone knows everybody" model of original Internet
- Firewalls + NAT hide internal networks
- VPN / tunneling build private networks on top of commodity network