N 12:;21 Computer Networking

Lecture 8 — DNS
Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

Outline “.

* The IP protocol
. IPv4
* IPv6

* |P in practice
* Network address translation
» Address resolution protocol
* Tunnels

How Do We Identify Hosts? “

* Hosts have a ~
« host name / 4

=
:
» There is a reason .. '

* Remember?
« But how do we translate?

» |P address
« MAC address

Naming i‘.

» How do we efficiently locate resources?
* DNS: name - IP address

» Challenge
* How do we scale this to the wide area?

Obvious Solutions (1) N

Why not centralize DNS?

* Distant centralized database
 Traffic volume

+ Single point of failure
Single point of update
Single point of control

* Doesn’t scale!

Obvious Solutions (2) «N

Why not use /etc/hosts?
 Original Name to Address Mapping
» Flat namespace
« /etc/hosts keeps track of the mappings
* SRI kept a master copy
» All computers periodically download the master
* Number of hosts was increasing: machine per
domain - machine per user
* Many more downloads
* Updates are larger
« Many more updates

Domain Name System Goals “

Basically a wide-area distributed database
Scalability

Decentralized maintenance

* Robustness

Global scope

* Names mean the same thing everywhere
* Don'’t need

» Atomicity

 Strong consistency

Programmer’s View of DNS “.

 Conceptually, programmers can view the
DNS database as a collection of millions of
host entry structures:

/* DNS host entry structure */
struct addrinfo {

int ai_family; /* host address type (AF_INET) */
size_t ai_addrlen; /*length of an address, in bytes */
struct sockaddr *ai_addr; /* address! */

char *ai_canonname; /* official domain name of host */

struct addrinfo *ai_next; /* other entries for host */

}

* Functions for retrieving host entries from
DNS:
egetaddrinfo: query key is a DNS host name.
egetnameinfo: query key is an IP address.

DNS Records

«

RR format: (class, name, value, type, ttl)

DB contains tuples called resource records (RRs)

« Classes = Internet (IN), Chaosnet (CH), etc.
Each class defines value associated with type

FOR IN class:

« Type=A
* name is hostname
« valueis IP address
* Type=NS
* name is domain (e.g. foo.com)

« value is name of authoritative name
server for this domain

Type=CNAME

* name is an alias name for some
“canonical” (the real) name
« value is canonical name

Type=MX

« value is hostname of mailserver
associated with name

Properties of DNS Host Entries i“

+ Different kinds of mappings are possible:
» Simple case: 1-1 mapping between domain name and
IP addr:
= kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242
* Multiple domain names maps to the same IP address:
e eecs.mit.edu and cs.mit.edu bothmapto 18.62.1.6
« Single domain name maps to multiple IP addresses:
e aol._.com and www.aol .com map to multiple IP addrs.
» Some valid domain names don’t map to any IP
address:
« for example: cmcl .cs.cmu.edu

DNS Message Format

L\

[Identification Flags
12 bytes No. of Questions No. of Answer RRs
l No. of Authority RRs No. of Additional RRs
Name, type fields
foraquery —— Questions (variable number of answers)

RRs in response
to query

|~ Answers (variable number of resource records)

Records for
authoritative
servers

—— Authority (variable number of resource records)

Additional ——Additional Info (variable number of resource records)

“helpful info that

may be used

DNS Header Fields N

* |dentification
» Used to match up request/response
* Flags
* 1-bit to mark query or response
* 1-bit to mark authoritative or not
* 1-bit to request recursive resolution
 1-bit to indicate support for recursive resolution

DNS Design: Hierarchy Definitions “.

» Each node in hierarchy
stores a list of names that
root end with same suffix
org 7{ AN « Suffix = path up tree
net edu com uk . .
* E.g., given this tree, where
would following be stored:

DNS Design: Zone Definitions “.

» Zone = contiguous section
of name space
» E.g., Complete tree, single
node or subtree
* A zone has an associated
set of name servers
* Must store list of names and
tree links

Subtree

Single node

Complete
Tree

gwu uch cmu bu mit .
AN Fred.com
cs ece * Fred.edu
Cn“d * Fred.cmu.edu
» Fred.cmcl.cs.cmu.edu
* Fred.cs.mit.edu
13
DNS Design: Management “

» Zones are created by convincing owner node
(parent) to create/delegate a subzone
» Records within zone stored multiple redundant
name servers
» Primary/master name server updated manually
» Secondary/redundant servers updated by zone
transfer of name space

+ Zone transfer is a bulk transfer of the “configuration” of a
DNS server — uses TCP to ensure reliability

+ Example:
+ CS.CMU.EDU created by CMU.EDU administrators
* Who creates CMU.EDU or .EDU?

DNS: Root Name Servers “.

Responsible for “root” zone
Approx. 13 root name servers
worldwide
« Currently {a-m}.root-
servers.net
* Very well protected
Local name servers contact
root servers when they cannot
resolve a name
« Configured with well-known
root servers
« Newer picture > www.root-
servers.org

DNS Root Servers I

Thesignation, Rempamibility, and Locatisns
14I0RDU Stocknoim

EHASA Moffe Fisid CA
FASC Woodside CA

M-WIDE Kile.

BLIRSFE London

i
o ABEHE Hengn VA
™ CH5 Hundon VA

DAMD College P MD

G 0i%A Bostng Virna Vi
HARAmy Aberdeen MD
J-HSF 1S Heendon VA

BOIRAUSC Muine tvIRey CA
LDISA-USE Miina delfley CA

Root Zone i‘.

» Generic Top Level Domains (gTLD) = .com,
.net, .org, efc...

* Country Code Top Level Domain (ccTLD) =
.us, .ca, .fi, .uk, etc...

* Root server ({a-m}.root-servers.net) also
used to cover gTLD domains
» Load on root servers was growing quickly!

* Moving .com, .net, .org off root servers was
clearly necessary to reduce load > done Aug
2000

Servers/Resolvers i‘.

» Each host has a resolver
» Typically a library that applications can link to
* Local name servers hand-configured (e.g.
/etc/resolv.conf)
* Name servers
« Either responsible for some zone or...

* Local servers
* Do lookup of distant host names for local hosts
» Typically answer queries about local zone

Typical Resolution “

root & edu
v
www.cs.cmu.edu gs,c‘““‘e DNS server
o a ety
Q— oo o
N — ns1.cmu.edu
Local DNS server

Client DNS server

ns1.cs.cmu.edu
01 DNS
server

Typical Resolution: Steps i‘.

» Steps for resolving www.cmu.edu
+ Application calls gethostbyname() (RESOLVER)
* Resolver contacts local name server (S;)
* S, queries root server (S,) for (www.cmu.edu)
» S, returns NS record for cmu.edu (S;)
» What about A record for S;?
» This is what the additional information section is for (PREFETCHING)
* S, queries S; for www.cmu.edu
+ S returns A record for www.cmu.edu

20

Lookup Methods

«

Recursive query:

« Server goes out and
searches for more info
(recursive)

* Only returns final answer
or “not found”

Iterative query:

» Server responds with as
much as it knows
(iterative)

* “l don’t know this name,
but ask this server”

Workload impact on choice?

* Local server typically does
recursive

* Root/distant server does
iterative

root name server

v
2 E'
O 7 3= iterated query
3 4

g——9

T
local name server

dns.eurecom.fr

1 8

requesting host

surf.eurecom.fr

intermediate name server
dns.umass.edu

51le

authoritative name
server
dns.cs.umass.edu

21

Workload and Caching “.

* Are all servers/names likely to be equally popular?
* Why might this be a problem? How can we solve this problem?
* DNS responses are cached
» Quick response for repeated translations
« Other queries may reuse some parts of lookup
* DNS negative queries are cached
« Don’t have to repeat past mistakes, e.g., misspellings
» Cached data periodically times out
« Lifetime (TTL) of data controlled by owner of data
e TTL passed with every record
* Responses can include additional information
« Often used for prefetching, e.g., CNAME/MX/NS records

22

Typical Resolution

L\

www.cs.cmu.edu

Q_

Client

Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

ns1.cs.cmu.edu
DNS
server

23

Subsequent Lookup Example i‘.

root & edu
DNS server

ftp.cs.cmu.edu

%

Client

cmu.edu
DNS server

Local
DNS server

cs.cmu.edu
0t DNS
server

24

Reliability N

* DNS servers are replicated
* Name service available if = one replica is up
» Queries can be load balanced between replicas
* Queries return multiple A records
» UDP used for queries
* Need reliability > must implement this on top of UDP!
* Why not just use TCP?
» Try alternate servers on timeout
« Exponential backoff when retrying same server
» Same identifier for all queries
« Client does not care which server responds

25

Mail Addresses i‘.

* MX records point to mail exchanger for a
name

* E.g. mail.acm.org is MX for acm.org
+ Addition of MX record type proved to be a
challenge

* How to get mail programs to lookup MX record
for mail delivery?

* Needed critical mass of such mailers

26

Tracing Hierarchy (1) i‘.

« Dig Program
+ Allows querying of DNS system
» Use flags to find name server (NS)
» Disable recursion so that operates one step at a time

unix> dig +norecurse @a.root-servers.net NS kittyhawk.cmcl.cs.cmu.edu
;7 AUTHORITY SECTION:
edu. 172800 IN NS L3.NSTLD.COM.
edu. 172800 IN NS D3.NSTLD.COM.
edu. 172800 IN NS A3.NSTLD.COM.
edu. 172800 IN NS E3.NSTLD.COM.
edu. 172800 IN NS C3.NSTLD.COM.
edu. 172800 IN NS F3.NSTLD.COM.
edu. 172800 IN NS G3.NSTLD.COM.
e | edu. 172800 IN NS B3.NSTLD.COM.
edu. 172800 IN NS M3.NSTLD.COM.

27

DNS Summary i‘,

Motivations = large distributed database
+ Scalability

* Independent update

* Robustness

 Hierarchical database structure

» Zones

* How is a lookup done
Caching/prefetching and TTLs

* Reverse name lookup

What are the steps to creating your own
domain?

28

Outline

«

* Routing intro

» Distance Vector

* Link State

29

IP Forwarding

N

* The Story So Far...
» IP addresses are structured to reflect
Internet structure
+ IP packet headers carry these addresses
* When Packet Arrives at Router

N

* Examine header to determine intended
destination

/Aouter

« Look up in table to determine next hop
in path — longest prefix match

+ Send packet out appropriate port
* This/next lecture
» How to generate the forwarding table

=

30

Generic Router Architecture

L\

Header Processing

[Data [T
—

Lookup
IP Address

Update
Header

Queue

IP Address Next Hop

1M prefixes
Off-chip
DRAM

&

L2

Address
Table

[Data[717]

Packet
w&
v
Buffer | Off-chip
Memory | DRAM

31

Third Generation Routers

“Crossbar”: Switched Backplane
p /4"&'\\ m

L ine
ard

Loca

able

i } } Routin
*
Flvding /

o] Periodic
— 1 | Control
updates

Graph Model “.

* Represent each router as node

« Direct link between routers represented by edge
* Symmetric links = undirected graph

« Edge “cost” ¢(x,y) denotes measure of difficulty of using link
«+ delay, $ cost, or congestion level

« Task
» Determine least cost path from every node to every other node

» Path cost d(x,y) = sum of link costs

33

Routes from Node A

Forwarding Table for A

Dest Cost Next

Hop
A 0 A
B 4 B
C 6 E
D 7 B
E 2 E
F 5 E

» Set of shortest paths forms tree
« Shortest path spanning tree

» Solution is not unique
« E.g., A-E-F-C-D also has cost 7

34

Ways to Compute Shortest Paths “

» Centralized
« Collect graph structure in one place
» Use standard graph algorithm
« Disseminate routing tables

* Link-state
« Every node collects complete graph structure
« Each computes shortest paths from it
« Each generates its own routing table

» Distance-vector
» No one has copy of graph
* Nodes construct their own tables iteratively
» Each sends information about its table to neighbors

35

Routing Hierarchy

"N

IP packets must
travel across
domains — inter-
domain routing
* Primary role of IP
» Based on CIDR
prefix
Must also travel
through domains —
intro-domain routing
» Across subnets

» Based on subnet ID
or longer prefix

36

Routing and Forwarding in
the Internet

«

| Network 1D | ’NodeID |

10

