
1

15-441 Computer Networking

Lecture 8 – DNS
Peter Steenkiste

Fall 2016
www.cs.cmu.edu/~prs/15-441-F16

15-441
15-641

2

Outline

• The IP protocol
• IPv4
• IPv6

• IP in practice
• Network address translation
• Address resolution protocol
• Tunnels

How Do We Identify Hosts?

• Hosts have a
• host name
• IP address
• MAC address

• There is a reason ..
• Remember?

• But how do we translate?

3

Application

Presentation

Session

Transport

Network

Data link

Physical

DNS

ARP

4

Naming

• How do we efficiently locate resources?
• DNS: name  IP address

• Challenge
• How do we scale this to the wide area?

2

5

Obvious Solutions (1)

Why not centralize DNS?
• Distant centralized database

• Traffic volume
• Single point of failure
• Single point of update
• Single point of control

• Doesn’t scale!

6

Obvious Solutions (2)

Why not use /etc/hosts?
• Original Name to Address Mapping

• Flat namespace
• /etc/hosts keeps track of the mappings
• SRI kept a master copy
• All computers periodically download the master

• Number of hosts was increasing: machine per
domain  machine per user
• Many more downloads
• Updates are larger
• Many more updates

7

Domain Name System Goals

• Basically a wide-area distributed database
• Scalability
• Decentralized maintenance
• Robustness
• Global scope

• Names mean the same thing everywhere
• Don’t need

• Atomicity
• Strong consistency

8

Programmer’s View of DNS

• Conceptually, programmers can view the
DNS database as a collection of millions of
host entry structures:

• Functions for retrieving host entries from
DNS:
•getaddrinfo: query key is a DNS host name.
•getnameinfo: query key is an IP address.

/* DNS host entry structure */
struct addrinfo {

int ai_family; /* host address type (AF_INET) */
size_t ai_addrlen; /* length of an address, in bytes */
struct sockaddr *ai_addr; /* address! */
char *ai_canonname; /* official domain name of host */
struct addrinfo *ai_next; /* other entries for host */

};

3

9

DNS Records

RR format: (class, name, value, type, ttl)

• DB contains tuples called resource records (RRs)
• Classes = Internet (IN), Chaosnet (CH), etc.
• Each class defines value associated with type

FOR IN class:

• Type=A
• name is hostname
• value is IP address

• Type=NS
• name is domain (e.g. foo.com)
• value is name of authoritative name

server for this domain

• Type=CNAME
• name is an alias name for some

“canonical” (the real) name
• value is canonical name

• Type=MX
• value is hostname of mailserver

associated with name

10

Properties of DNS Host Entries

• Different kinds of mappings are possible:
• Simple case: 1-1 mapping between domain name and

IP addr:
• kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242

• Multiple domain names maps to the same IP address:
• eecs.mit.edu and cs.mit.edu both map to 18.62.1.6

• Single domain name maps to multiple IP addresses:
• aol.com and www.aol.com map to multiple IP addrs.

• Some valid domain names don’t map to any IP
address:
• for example: cmcl.cs.cmu.edu

11

DNS Message Format

Identification

No. of Questions

No. of Authority RRs

Questions (variable number of answers)

Answers (variable number of resource records)

Authority (variable number of resource records)

Additional Info (variable number of resource records)

Flags

No. of Answer RRs

No. of Additional RRs
Name, type fields
for a query

RRs in response
to query

Records for
authoritative
servers

Additional
“helpful info that
may be used

12 bytes

12

DNS Header Fields

• Identification
• Used to match up request/response

• Flags
• 1-bit to mark query or response
• 1-bit to mark authoritative or not
• 1-bit to request recursive resolution
• 1-bit to indicate support for recursive resolution

4

13

DNS Design: Hierarchy Definitions

root

edunet
org

ukcom

gwu ucb cmu bu mit

cs ece
cmcl

• Each node in hierarchy
stores a list of names that
end with same suffix

• Suffix = path up tree
• E.g., given this tree, where

would following be stored:
• Fred.com
• Fred.edu
• Fred.cmu.edu
• Fred.cmcl.cs.cmu.edu
• Fred.cs.mit.edu

14

DNS Design: Zone Definitions

root

edunet
org

ukcom
ca

gwu ucb cmu bu mit

cs ece
cmcl Single node

Subtree

Complete
Tree

• Zone = contiguous section
of name space

• E.g., Complete tree, single
node or subtree

• A zone has an associated
set of name servers

• Must store list of names and
tree links

15

DNS Design: Management

• Zones are created by convincing owner node
(parent) to create/delegate a subzone
• Records within zone stored multiple redundant

name servers
• Primary/master name server updated manually
• Secondary/redundant servers updated by zone

transfer of name space
• Zone transfer is a bulk transfer of the “configuration” of a

DNS server – uses TCP to ensure reliability
• Example:

• CS.CMU.EDU created by CMU.EDU administrators
• Who creates CMU.EDU or .EDU?

16

DNS: Root Name Servers

• Responsible for “root” zone
• Approx. 13 root name servers

worldwide
• Currently {a-m}.root-

servers.net
• Very well protected

• Local name servers contact
root servers when they cannot
resolve a name
• Configured with well-known

root servers
• Newer picture  www.root-

servers.org

5

17

Root Zone

• Generic Top Level Domains (gTLD) = .com,
.net, .org, etc…

• Country Code Top Level Domain (ccTLD) =
.us, .ca, .fi, .uk, etc…

• Root server ({a-m}.root-servers.net) also
used to cover gTLD domains
• Load on root servers was growing quickly!
• Moving .com, .net, .org off root servers was

clearly necessary to reduce load  done Aug
2000

18

Servers/Resolvers

• Each host has a resolver
• Typically a library that applications can link to
• Local name servers hand-configured (e.g.

/etc/resolv.conf)
• Name servers

• Either responsible for some zone or…
• Local servers

• Do lookup of distant host names for local hosts
• Typically answer queries about local zone

19

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

ns1.cs.cmu.edu
DNS

server

20

Typical Resolution: Steps

• Steps for resolving www.cmu.edu
• Application calls gethostbyname() (RESOLVER)
• Resolver contacts local name server (S1)
• S1 queries root server (S2) for (www.cmu.edu)
• S2 returns NS record for cmu.edu (S3)
• What about A record for S3?

• This is what the additional information section is for (PREFETCHING)
• S1 queries S3 for www.cmu.edu
• S3 returns A record for www.cmu.edu

6

21

Lookup Methods

Recursive query:
• Server goes out and

searches for more info
(recursive)

• Only returns final answer
or “not found”

Iterative query:
• Server responds with as

much as it knows
(iterative)

• “I don’t know this name,
but ask this server”

Workload impact on choice?
• Local server typically does

recursive
• Root/distant server does

iterative requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2

3
4

5 6authoritative name
server

dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

22

Workload and Caching

• Are all servers/names likely to be equally popular?
• Why might this be a problem? How can we solve this problem?

• DNS responses are cached
• Quick response for repeated translations
• Other queries may reuse some parts of lookup

• DNS negative queries are cached
• Don’t have to repeat past mistakes, e.g., misspellings

• Cached data periodically times out
• Lifetime (TTL) of data controlled by owner of data
• TTL passed with every record

• Responses can include additional information
• Often used for prefetching, e.g., CNAME/MX/NS records

23

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

ns1.cs.cmu.edu
DNS

server

24

Subsequent Lookup Example

Client Local
DNS server

root & edu
DNS server

cmu.edu
DNS server

cs.cmu.edu
DNS

server

ftp.cs.cmu.edu

7

25

Reliability

• DNS servers are replicated
• Name service available if ≥ one replica is up
• Queries can be load balanced between replicas
• Queries return multiple A records

• UDP used for queries
• Need reliability  must implement this on top of UDP!
• Why not just use TCP?

• Try alternate servers on timeout
• Exponential backoff when retrying same server

• Same identifier for all queries
• Client does not care which server responds

26

Mail Addresses

• MX records point to mail exchanger for a
name
• E.g. mail.acm.org is MX for acm.org

• Addition of MX record type proved to be a
challenge
• How to get mail programs to lookup MX record

for mail delivery?
• Needed critical mass of such mailers

27

Tracing Hierarchy (1)

• Dig Program
• Allows querying of DNS system
• Use flags to find name server (NS)
• Disable recursion so that operates one step at a time

• All .edu names handled by set of servers

unix> dig +norecurse @a.root-servers.net NS kittyhawk.cmcl.cs.cmu.edu

;; AUTHORITY SECTION:
edu. 172800 IN NS L3.NSTLD.COM.
edu. 172800 IN NS D3.NSTLD.COM.
edu. 172800 IN NS A3.NSTLD.COM.
edu. 172800 IN NS E3.NSTLD.COM.
edu. 172800 IN NS C3.NSTLD.COM.
edu. 172800 IN NS F3.NSTLD.COM.
edu. 172800 IN NS G3.NSTLD.COM.
edu. 172800 IN NS B3.NSTLD.COM.
edu. 172800 IN NS M3.NSTLD.COM.

28

DNS Summary

• Motivations  large distributed database
• Scalability
• Independent update
• Robustness

• Hierarchical database structure
• Zones
• How is a lookup done

• Caching/prefetching and TTLs
• Reverse name lookup
• What are the steps to creating your own

domain?

8

29

Outline

• Routing intro

• Distance Vector

• Link State

30

IP Forwarding

• The Story So Far…
• IP addresses are structured to reflect

Internet structure
• IP packet headers carry these addresses
• When Packet Arrives at Router

• Examine header to determine intended
destination

• Look up in table to determine next hop
in path – longest prefix match

• Send packet out appropriate port

• This/next lecture
• How to generate the forwarding table

Router

31

Generic Router Architecture

Lookup
IP Address

Update
Header

Header Processing
Data Hdr Data Hdr

1M prefixes
Off-chip

DRAM

Address
Table

IP Address Next Hop

Queue
Packet

Buffer
Memory

Off-chip
DRAM

Third Generation Routers

Line
Card

MAC

Local
Buffer

Memory

CPU
Card

Line
Card

MAC

Local
Buffer

Memory

“Crossbar”: Switched Backplane

Fwding
Table

Routing
Table

Fwding
Table

Periodic
Control
updates

9

33

Graph Model

• Represent each router as node
• Direct link between routers represented by edge

• Symmetric links  undirected graph
• Edge “cost” c(x,y) denotes measure of difficulty of using link

• delay, $ cost, or congestion level
• Task

• Determine least cost path from every node to every other node
• Path cost d(x,y) = sum of link costs

A

E

F

C

D

B

2

3

6

4

1

1

1

3

34

Routes from Node A

• Set of shortest paths forms tree
• Shortest path spanning tree

• Solution is not unique
• E.g., A-E-F-C-D also has cost 7

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Forwarding Table for A
Dest Cost Next

Hop
A 0 A
B 4 B
C 6 E
D 7 B
E 2 E
F 5 E

35

Ways to Compute Shortest Paths

• Centralized
• Collect graph structure in one place
• Use standard graph algorithm
• Disseminate routing tables

• Link-state
• Every node collects complete graph structure
• Each computes shortest paths from it
• Each generates its own routing table

• Distance-vector
• No one has copy of graph
• Nodes construct their own tables iteratively
• Each sends information about its table to neighbors

Routing Hierarchy

• IP packets must
travel across
domains – inter-
domain routing
• Primary role of IP
• Based on CIDR

prefix
• Must also travel

through domains –
intro-domain routing
• Across subnets
• Based on subnet ID

or longer prefix

36

10

Routing and Forwarding in
the Internet

Network ID Node ID

Prefix “grows” along path

