

Reminder: Datalink Functions

- Framing: encapsulating a network layer datagram into a bit stream.
 - Add header, mark and detect frame boundaries, ...
- Error control: error detection and correction to deal with bit errors.
 - May also include other reliability support, e.g. retransmission
- Flow control: avoid sender overrunning receiver.
- Media access control (MAC): which frame should be sent over the link next.
 - Easy for point-to-point links
 - Harder for multi-access links: who gets to send?

Forward units of data based on address in header. Many data-link technologies use switching. • Virtual circuits: Frame Relay, ATM, X.25, ... • Packets: Ethernet, ... "Switching" also happens at the network layer. • Layer 3: Internet protocol • In this case, address is an IP address • IP over SONET, IP over ATM, ... • Otherwise, operation is very similar Switching is different from traditional (hard) circuits • E.g., telephone switches (not covered in this course) • Switching is based on timing – no addresses

Connections or Not?

- Two basic approaches to packet forwarding
 - Connectionless
 - (virtual) Circuit switched
- When would you use?

Virtual Circuit Switching

- Two stage process similar to traditional circuits
 - Setup connection + create VC ID
 - Send packets -
- RTT introduced before any data is sent
- Per packet overhead can be smaller (VCI << adr)
- Switch failures are hard to deal with
- Reserves resources for connection possible
- Widely used in core networks (e.g. MPLS)
- More on this later

Aloha – Basic Technique First random MAC developed • For radio-based communication in Hawaii (1970) • Basic idea: When ready, transmit Receivers send ACK for data · Detect collisions by timing out for ACK Recover from collision by trying after random delay

Random Access Protocols

- When node has packet to send
 - Transmit at full channel data rate R
 - No a priori coordination among nodes
- Two or more transmitting nodes → "collision"
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - Slotted ALOHA and ALOHA
 - CSMA and CSMA/CD

Ethernet CSMA/CD: Making it work

Jam Signal: make sure all other transmitters are aware of collision; 48 bits;

Exponential Backoff:

- If deterministic delay after collision, collision will occur again in lockstep
- Why not random delay with fixed mean?
 - Few senders → needless waiting
 - Too many senders → too many collisions
- Goal: adapt retransmission attempts to estimated current load
 - heavy load: random wait will be longer

Ethernet Backoff Calculation

- Delay is set as K slots control K
- Exponentially increasing random delay
 - Infer senders from # of collisions
 - More senders → increase wait time
- First collision: choose K from {0,1}; delay is K x 512 bit transmission times
- After second collision: choose K from {0,1,2,3}...
- After ten or more collisions, choose K from {0,1,2,3,4,...,1023}

Outline: Multiple Access Protocols

- Scheduled access (short)
- Random access (long)
 - Aloha
 - Ethernet MAC
 - Collisions
 - Ethernet Frames

Packets must be long enough to guarantee all nodes observe collision Depends on packet size and length of wire Propagation delay Min packet length > 2x max prop delay

Delay & Collision Detection Speed in cable ~= 60% * c ~= 1.8 x 10^8 m/s 10Mb Ethernet, 2.5km cable ~= 12.5us delay +Introduced repeaters (max 5 segments) Worst case - 51.2us round trip time! Corresponds to 512 bits Also used as slot time = 51.2us for backoff After this time, sender is guaranteed sole access to link Specifically, will have heard any signal sent in the previous slot

Ethernet Frame Structure (cont.)

- Preamble: 8 bytes
 - 101010...1011
 - Used to synchronize receiver, sender clock rates
- CRC: 4 bytes
 - Checked at receiver, if error is detected, the frame is simply dropped
- Type: 2 bytes
 - Demultiplexing: indicates the higher layer protocol, mostly IP today but historically more protocols (such as Novell IPX and AppleTalk)

Ethernet Address Assignment

- Each adapter is given a globally unique 6-byte IEEE address at manufacturing time
 - Address space is allocated to manufacturers
 - 24 bits identify manufacturer
 - E.g., 0:0:15:* → 3com adapter
 - Frame is received by all adapters on a LAN and dropped if address does not match
- Special addresses
 - Broadcast FF:FF:FF:FF:FF is "everybody"
 - · Range of addresses allocated to multicast
 - Adapter maintains list of multicast groups node is interested in

Addressing Alternatives

- Broadcast → all nodes receive all packets
 - Addressing determines which packets are kept and which are packets are thrown away
 - Packets can be sent to:
 - Unicast one destination
 - Multicast group of nodes (e.g. "everyone playing Quake")
 - Broadcast everybody on wire
- Dynamic addresses (e.g. Appletalk)
 - · Pick an address at random
 - Broadcast "is anyone using address XX?"
 - If yes, repeat
- Static address (e.g. Ethernet)

Why Did Ethernet Win?

- Failure modes
 - Token rings network unusable (or expensive)
- Good performance in common case
 - · Deals well with bursty traffic
 - · Usually used at low load
- Volume → lower cost → higher volume
- Adaptable
 - To higher bandwidths (vs. FDDI)
 - To switching (vs. ATM)
- Easy incremental deployment (backwards compatible)
- Cheap cabling, etc

And .. It is Easy to Manage

- You plug in the host and it basically works
 - Zero configuration at the datalink layer
 - Today: may need to deal with security
- Protocol is fully distributed
- Broadcast-based.
 - In part explains the easy management
 - Some LAN protocols (e.g. ARP) rely on broadcast
 - Networking would be harder without ARP
 - Not having natural broadcast capabilities adds complexity to a LAN (e.g., ATM)
- Network managers love it!

Summary

- CSMA/CD → carrier sense multiple access with collision detection
 - Why do we need exponential backoff?
 - Why does collision happen?
 - Why do we need a minimum packet size?
 - How does this scale with speed?
- Ethernet
 - What is the purpose of different header fields?
 - What do Ethernet addresses look like?
- What are some alternatives to Ethernet design?